Skip to main content

Crystallographic Aspects of Interfaces in Ferroelectrics and Related Materials

  • Chapter
  • First Online:
Heterogeneous Ferroelectric Solid Solutions

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 151))

  • 840 Accesses

Abstract

Experimental studies of single crystals (SCs) of polar dielectrics show that, in an external electric field E, these materials can exhibit either linear or non-linear behaviour [1, 2]. A non-linear dependence of the polarization Pon Ein a certain range of Eis observed, for instance, in ferroelectric (FE) and antiferroelectric SCs [1, 3, 4], poled ceramics and SCs of FE solid solutions [3, 4], and composites based on FE ceramics [5]. The presence of FE and ferroelastic domains (or mechanical twins), heterophase regions, and fluctuations of composition makes the P(E) dependence complicated and is caused by many physical and crystallographic factors that are studied in the last decades [1, 3, 4]. Moreover, the dependence of physical properties on the domain structure (DS) in FE SCs and ceramic grains represents an independent problem that is solved by means of experimental and theoretical methods [6, 7, 8]. An interest in the aforementioned subjects stems from a necessity to study an important link between the domain configurations and physical properties of FEs, to consider the role of the domain-orientation processes in forming the physical properties, to describe their anomalies in heterophase states on mesoscopic and macroscopic levels, and to predict ways for the formation and rearrangement of DS at the structural phase transitions. To solve these and related problems, it is important to understand the physical phenomena that are concerned with the presence of both DS and heterophase states in FEs. One of the main links in the interpretation of the physical phenomena in polydomain and/or heterophase FE SCs is the interfaces [9] that represent systems of boundaries between the domains (or domain regions) and boundaries between the phases (they can be split into domains). It should be added that the polydomain SC as a model object plays the leading role in the hierarchy of the physical properties ‘single-domain FE SC – polydomain FE SC – FE polycrystal – poled FE ceramic – composite based on FE ceramic, and an important example of this hierarchy was first analysed for FEs of the PbTiO3type [7, 8, 10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lines M and Glass A, Principles and Application of Ferroelectrics and Related Materials. (Clarendon Press, Oxford, 1977)

    Google Scholar 

  2. Zheludev IS, Physics of Crystalline Dielectrics. Vol. 2: Electrical Properties. (Plenum, New York, 1971)

    Google Scholar 

  3. Smolensky GA, Bokov VA, Isupov VA, Krainik NN, Pasynkov RE, Sokolov AI, Yushin NK, Physics of Ferroelectric Phenomena. (Nauka, Leningrad (in Russian), 1985)

    Google Scholar 

  4. Xu Y, Ferroelectric Materials and Their Applications. (North-Holland, Amsterdam, London, New York, Toronto, 1991)

    Google Scholar 

  5. Fang D-N, Soh AK, Li C-Q, Jiang B, Nonlinear behavior of 0–3 type ferroelectric composites with polymer matrices. J. Mater. Sci. 365281–5288 (2001)

    Article  CAS  Google Scholar 

  6. Malbec A, Liu T, and Lynch, Characterization and modeling of domain engineered relaxor ferroelectric single crystals. J. de Phys. IV (France) 115, 59–66 (2004)

    Google Scholar 

  7. Turik AV, Elastic, piezoelectric, and dielectric properties of single crystals of BaTiO3with a laminar domain structure. Sov. Phys. Solid State 12, 688–693 (1970)

    Google Scholar 

  8. Topolov VYu, Bondarenko EI, Turik AV, Chernobabov AI, The effect of domain structure on electromechanical properties of PbTiO3-based ferroelectrics. Ferroelectrics 140, 175–181 (1993)

    Google Scholar 

  9. Topolov VYu, Interfaces in ferroelectrics and related materials with complex domain structures. Ferroelectrics 222:41–52 (1999)

    Google Scholar 

  10. Topolov VYu, Bowen CR, Electromechanical Properties in Composites Based on Ferroelectrics. (Springer, London, 2009)

    Google Scholar 

  11. Fesenko EG, Gavrilyachenko VG, Semenchev AF, (1990) Domain Structure of Multiaxial Ferroelectric Crystals. (Rostov University Press, Rostov-on-Don (in Russian), 1990)

    Google Scholar 

  12. Rudyak VM, Switching Processes in Nonlinear Crystals. (Nauka, Moscow (in Russian), 1986)

    Google Scholar 

  13. Shuvalov LA, Urusovskaya AA, Zheludev IS, Zalessky AV, Semiletov SA, Grechishnikov BN, Chistyakov IG, Pikin SA, Modern Crystallography. Vol. 4. (Nauka, Moscow (in Russian), 1981)

    Google Scholar 

  14. Zheludev IS, Shuvalov LA, Ferroelectric phase transitions and symmetry of crystals. Kristallografiya 1:681–688, (1956) (in Russian)

    Google Scholar 

  15. Zheludev IS, Shuvalov LA, Orientation of domains and macrosymmetry of properties of ferroelectric single crystals. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 21:264–274 (1957) (in Russian)

    Google Scholar 

  16. Shuvalov LA, Crystallographic classification of ferroelectrics. Ferroelectric phase transitions and features of the domain structure and some physical properties of ferroelectrics of different classification species. Kristallografiya 8:617–624 (1963) (in Russian)

    Google Scholar 

  17. Shuvalov LA, Crystallophysical classification of ferroelectrics and its applications. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 28:660–665 (1964) (in Russian)

    Google Scholar 

  18. Shuvalov LA, Symmetry aspects of ferroelectricity. J. Phys. Sol. Jpn. 28(Suppl.):38–51 (1970)

    Google Scholar 

  19. Zheludev IS, Ferroelectricity and Symmetry. In: Solid State Physics: Advances in Research and Applications. Vol. 26. (Academic, New York, London, 1971) pp 429–464

    Google Scholar 

  20. Mitsui T, Furuichi J, Domain structure of Rochelle salt and KH2PO4. Phys. Rev. 90:193–202, (1953)

    Article  CAS  Google Scholar 

  21. Cao W, Cross LE, Theory of tetragonal twin structures in ferroelectric perovskites with a first-order phase transition. Phys. Rev. B44:5–12 (1991)

    Google Scholar 

  22. Cao W, Defect stabilized periodic amplitude modulations in ferroelectrics. Phase Trans. 55:69–78 (1995)

    Article  CAS  Google Scholar 

  23. Nambu S, Sagala DA, Domain formation and elastic long-range interaction in ferroelectric perovskites. Phys. Rev. B 50:5838–5847 (1994)

    Article  CAS  Google Scholar 

  24. Rosakis P, Jiang Q, On the morphology of ferroelectric domains. Int. J. Eng. Sci 33:1–12 (1995)

    Article  CAS  Google Scholar 

  25. Dec J, Orientacija i kinetyka granic fazowych w monokryształachPbTiO 3 , NaNbO 3  i PbZrO 3 . (Universytet Śla̧ski, Katowice (in Polish), 1990)

    Google Scholar 

  26. Roytburd AL, Elastic domains and polydomain phases in solids. Phase Trans. 45:1–33 (1993)

    Article  CAS  Google Scholar 

  27. Topolov VYu, Turik AV, Crystallographic aspects of interfaces in ferroelectrics. Defect Diffus. Forum Pt A 123–124:31–50 (1995)

    Google Scholar 

  28. Roitburd AL, The theory of the formation of a heterophase structure in phase transformations in solids. Sov. Phys. Uspehi 17:326–344 (1974)

    Article  Google Scholar 

  29. Roitburd AL, On the thermodynamics of martensite nucleation. Mater. Sci. Eng. A 127:229–238 (1990)

    Article  Google Scholar 

  30. Wechsler MS, Lieberman DS, Read TA, On the theory of the formation of martensite. Trans. AIME J. Metals 197:1503–1515 (1953)

    Google Scholar 

  31. Lieberman DS, Wechsler MS, Read TA, Cubic to orthorhombic diffusionless phase change – experimental and theoretical studies of AuCd. J. Appl. Phys. 26:473–484 (1955)

    Article  CAS  Google Scholar 

  32. Bilby BA, Christian JW, Martensistic Transformations. In: The Mechanism of Phase Transformations in Metals. (The Institute of Metals, London, 1956), pp. 121–172

    Google Scholar 

  33. Larché FC, Coherent phase transformations. Annu. Rev. Mater. Sci. 20:83–99 (1990)

    Article  Google Scholar 

  34. Boulesteix C, Yangui B, Ben Salem M, Manolikas C, Amelinckx S, The orientation of interfaces between a prototype phase and its ferroelastic derivatives: Theoretical and experimental study. J. de Phys. (France) 47:461–471 (1986)

    Google Scholar 

  35. Kato M, Shibata-Yanagisawa M, Infinitesimal deformation approach of the phenomenological crystallographic theory of martensitic transformations. J. Mater. Sci. 25:194–202 (1990)

    Article  CAS  Google Scholar 

  36. Dudnik EF, Shuvalov LA, Domain structure and phase boundaries in ferroelastics. Ferroelectrics 98:207–214 (1989)

    Article  CAS  Google Scholar 

  37. Fousek J, Janovec V, The orientation of domain walls in twinned ferroelectric crystals. J. Appl. Phys. 40:135–142 (1969)

    Article  CAS  Google Scholar 

  38. Fousek J, Permissible domain walls in ferroelectric species. Czech. J. Phys. B 21:955–968 (1971)

    Article  CAS  Google Scholar 

  39. Janovec V, A symmetry approach to domain structures. Ferroelectrics 12:43–53 (1976)

    Article  Google Scholar 

  40. Sapriel J, Domain-wall orientations in ferroelastics. Phys. Rev. B 12:5128–5140 (1975)

    Article  CAS  Google Scholar 

  41. Vagin SV, Dudnik EF, Method of interpreting the domain structure of ferroelastics. Bull. Acad. Sci. U.S.S.R. Phys. Ser. 47(3):78–81 (1983)

    Google Scholar 

  42. Shuvalov LA, Dudnik EF, Pozdeyev VG, Forbidden domain boundaries in ferroelastics. Izvestiya Akademii Nauk SSSR. Seriya Fizicheskaya 51:2119–2123 (1987) (in Russian)

    Google Scholar 

  43. Boulesteix C, A survey of domains and domain walls generated by crystallographic phase transitions causing a change of lattice. Physica Status Solidi (a) 86:11–42 (1984)

    Google Scholar 

  44. Barkley JR, Jeitschko W, Antiphase boundaries and their interactions with domain walls in ferroelastic-ferroelectric Gd2(MoO4)3. J. Appl. Phys. 44:938–944 (1973)

    Article  CAS  Google Scholar 

  45. Capelle B, Malgrande C, Antiphase Domain Walls in Ferroelectric-Ferroelastic GDMO Crystals. In: Applications of X-Ray Topographic Methods to Materials Science: Proceedings of France–U.S.A. Seminar, Village, Colo., 7–10 August 1983. (New York London, 1984)pp 511–522

    Google Scholar 

  46. Rychetsky I, Schranz W, Antiphase boundaries in Hg2Br2and KSCN. J. Phys. Condens. Matter 5:1455–1472 (1993)

    Article  CAS  Google Scholar 

  47. Salje EKH, Phase Transitions in Ferroelastic and Co-Elastic Crystals. (Cambridge University Press, Cambridge, New York, Oakleigh, 1990)

    Google Scholar 

  48. Heine V, Bratkovsky AM, Salje EKH, The effect of clamped and free boundaries on long range strain coupling in structural phase transitions. Phase Trans. 52:85–93 (1994)

    Article  CAS  Google Scholar 

  49. Wruck B, Salje EKH, Zhang M, Abraham T, Bismayer U, On the thickness of feroelastic twin walls in lead phosphate Pb3(PO4)2: an X-ray diffraction study. Phase Trans. 48:135–148 (1994)

    Article  CAS  Google Scholar 

  50. Bratkovsky AM, Salje EKH, Heine V, Overwiew of the origin of tweed texture. Phase Trans. 52:77–83 (1994)

    Article  CAS  Google Scholar 

  51. Putnis A, Salje E, Tweed microstructures: Experimental observations and some theoretical models. Phase Trans. 48:85–105 (1994)

    Article  CAS  Google Scholar 

  52. Bratkovsky AM, Marais SC, Heine V, Salje EKH, The theory of fluctuations and texture embryos in structural phase transitions mediated by strain. J. Phys. Condens. Matter 6:3679–3696 (1994)

    Article  CAS  Google Scholar 

  53. Viehland D, Li JF, Colla EV, Domain structure changes in \((1 - x)\mathrm{Pb}(\mathrm{M{g}_{1/3}N{b}_{2/3}}){\mathrm{O}}_{3} - x{\mathrm{PbTiO}}_{3}\)with composition, dc bias, and ac field. J. Appl. Phys. 96:3379–3381 (2004)

    Article  CAS  Google Scholar 

  54. Noheda B, Structure and high-piezoelectricity in lead oxide solid solutions. Curr. Opin. Solid State Mater. Sci. 6:27–34 (2002)

    Article  CAS  Google Scholar 

  55. Bokov AA, Ye Z-G, Domain structure in the monoclinic Pmphase of \(\mathrm{Pb}(\mathrm{M{g}_{1/3}N{b}_{2/3}}){\mathrm{O}}_{3} -{\mathrm{PbTiO}}_{3}\)single crystals. J. Appl. Phys. 95:6347–6359 (2004)

    Article  CAS  Google Scholar 

  56. Shuvaeva VA, Glazer AM, Zekria D, The macroscopic symmetry of \(\mathrm{Pb}{({\mathrm{M{g}_{1/3}Nb}}_{2/3})}_{1-x}{\mathrm{Ti}}_{x}{\mathrm{O}}_{3}\)in the morphotropic phase boundary region \((x = 0.25 - 0.5)\). J. Phys. Condens. Matter 17:5709–5723 (2005)

    Google Scholar 

  57. Bokov AA, Ye Z-G, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41:31–52 (2006)

    Article  CAS  Google Scholar 

  58. Topolov VYu, Turik AV, Elastic interaction of phases of Gd2(MoO4)3crystals. Izvestiya Vysshikh Uchebnykh Zavedeniy, Fizika 33(3): 68–72 (1990) (in Russian)

    Google Scholar 

  59. Nakamura T, Kondo T, Kumada A, Observation of phase boundaries between ferro- and paraelectric phases in Gd2(MoO4)3crystals. Solid State Commun. 9:2265–2268 (1971)

    Article  CAS  Google Scholar 

  60. Metrat G, Theoretical determination of domain structure at transition from twinned phase: application to the tetragonal-orthorhombic transition of KNbO3. Ferroelectrics 26:801–804 (1980)

    Article  CAS  Google Scholar 

  61. Topolov VYu, Rabe H, Schmid H, Mechanical stresses and transition regions in polydomain Pb2CoWO6crystals. Ferroelectrics 146:113–121 (1993)

    Google Scholar 

  62. Topolov VYu, Ye Z-G, Schmid H, A crystallographic analysis of macrodomain structure in \({\mathrm{Pb(M{g}_{1/3}N{b}_{2/3})O}}_{3}\). J. Phys. Condens. Matter 7:3041–3049 (1995)

    Google Scholar 

  63. Topolov VYu, Ye Z-G, Formation of the stress-induced mm2 phase at the ferroelastic – antiferroelectric \(\bar{4}3m -\bar{ 4}2m\)phase transition in Cr − Cl boracite. J. Phys. Condens. Matter 8:6087–6094 (1996)

    Google Scholar 

  64. Topolov VYu, Peculiarities of coexistence of heavily twinned phases in the \((1 - x){\mathrm{Pb(M{g}_{1/3}N{b}_{2/3})TiO}}_{3} - x{\mathrm{PbTiO}}_{3}\)solid solutions at 0. 23 ≤ x ≤ 0. 30. Crystallogr. Reports 52:297–301 (2007)

    Google Scholar 

  65. Balyunis LE, Topolov VYu, Bah IS, Turik AV, The S-type domain and twin boundaries in plate-like PbZrO3crystals having complicated twinned structures. J. Phys. Condens. Matter 5:1419–1426 (1993)

    Article  CAS  Google Scholar 

  66. Topolov VYu, Balyunis LE, Turik AV, Eremkin VV, Sori BI, S-type twinning (domain) boundaries in PbZrO3crystals. Sov. Phys. Crystallogr. 37:223–226 (1992)

    Google Scholar 

  67. Topolov VYu, On Variety of Conditions for Realization of S-type Domain Boundaries in Ferroelectric Crystals. In: Proceedings of the All-Union Conference “Real Structure and Properties of Acentric Crystals”, September 17–22, 1990, Aleksandrov, VNIISIMS. Pt 2. Blagoveshchensk, (1990) pp 20–29 (in Russian)

    Google Scholar 

  68. Topolov VYu, Gagarina ES, Demidova VV, Domain structure and related phenomena in PbYb0.5Nb0.5O3crystals. Ferroelectrics 172:373–376 (1995)

    Google Scholar 

  69. Balyunis LE, Topolov VYu, Turik AV, Fesenko OE, Optical and crystallographic studies of twin and phase boundaries in antiferroelectric PbHfO3. Ferroelectrics 111:291–298 (1990)

    Article  Google Scholar 

  70. Topolov VYu, Turik AV, Fesenko OE, Eremkin VV, Mechanical stresses and three-phase states in perovskite-type ferroelectrics. Ferroelectrics Lett. Sect. 20:19–26 (1995)

    Google Scholar 

  71. Topolov VYu, Electromechanical Interactions in Heterogeneous Systems at Ferroelectric Phase Transitions. Author’s Abstract to the Thesis, Cand. Sci. (Phys. & Math.). Rostov State University, Rostov-on-Don, (1987) (in Russian)

    Google Scholar 

  72. Topolov VYu, Analysis of conditions necessary for the existence of a flat non-deformed boundary separating polydomain ferroelastic phases. Bulletin of the Academy of Sciences of the USSR. Phys. Ser. 53(7), 51–54 (1989)

    Google Scholar 

  73. Kuhn W, Domain structures induced by phase transitions in BaTiO3single crystals. Ferroelectrics Lett. Sect. 13:101–108 (1991)

    Article  CAS  Google Scholar 

  74. Topolov VYu, Some features of three-phase states in PbZr1 − x Ti x O3crystals. Crystallogr. Reports 43, 68–73 (1998)

    Google Scholar 

  75. Lekhnitsky SG, Elasticity Theory of the Anisotropic Solid. (Nauka, Moscow, 1977) (in Russian)

    Google Scholar 

  76. Mura T, Micromechanics of Defects in Solids. (Martins Nijhoff Publications, Dordrecht, 1987)

    Google Scholar 

  77. Topolov VYu, Balyunis LE, Turik AV, Bah IS, Fesenko OE, Interphase boundaries at cubic-rhombohedral phase transition in PbZrO3crystals. Bulletin of the Russian Academy of Sciences. Physics 56:1588–1593 (1992)

    Google Scholar 

  78. Sciau Ph, Calvarin G, Sun BN, Schmid H, X-ray study of phase transitions of the elpasolite-like ordered perovskite Pb2CoWO6. Physica Status Solidi (a) 129:309–321 (1992)

    Google Scholar 

  79. Ye Z-G, Topolov VYu, Complex domain and heterophase structures in \(\mathrm{Pb(M{g}_{1/3}N{b}_{2/3}){O}_{3}} -{\mathrm{PbTiO}}_{3}\)single crystals. Ferroelectrics 253:79–86 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly Yu. Topolov .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Topolov, V.Y. (2012). Crystallographic Aspects of Interfaces in Ferroelectrics and Related Materials. In: Heterogeneous Ferroelectric Solid Solutions. Springer Series in Materials Science, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22483-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22483-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22482-9

  • Online ISBN: 978-3-642-22483-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics