Skip to main content

Improved Approximation for the Directed Spanner Problem

  • Conference paper
Automata, Languages and Programming (ICALP 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6755))

Included in the following conference series:

Abstract

We give an \(O(\sqrt{n}\log n)\)-approximation algorithm for the problem of finding the sparsest spanner of a given directed graph G on n vertices. A spanner of a graph is a sparse subgraph that approximately preserves distances in the original graph. More precisely, given a graph G = (V,E) with nonnegative edge lengths dE → ℝ ≥ 0 and a stretch k ≥ 1, a subgraph H = (V,E H ) is a k-spanner of G if for every edge (u,v) ∈ E, the graph H contains a path from u to v of length at most k ·d(u,v). The previous best approximation ratio was \(\tilde{O}(n^{2/3})\), due to Dinitz and Krauthgamer (STOC ’11).

We also present an improved algorithm for the important special case of directed 3-spanners with unit edge lengths. The approximation ratio of our algorithm is \(\tilde{O}(n^{1/3})\) which almost matches the lower bound shown by Dinitz and Krauthgamer for the integrality gap of a natural linear programming relaxation. The best previously known algorithms for this problem, due to Berman, Raskhodnikova and Ruan (FSTTCS ’10) and Dinitz and Krauthgamer, had approximation ratio \(\tilde{O}(\sqrt{n})\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete & Computational Geometry 9(1), 81–100 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Awerbuch, B.: Communication-time trade-offs in network synchronization. In: PODC, pp. 272–276 (1985)

    Google Scholar 

  3. Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected \(\tilde{O} (n^2)\) time. ACM Transactions on Algorithms 2(4), 557–577 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, P., Raskhodnikova, S., Ruan, G.: Finding sparser directed spanners. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS. LIPIcs, vol. 8, pp. 424–435. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  5. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from transitive-closure spanners. In: Serna, M.J., Shaltiel, R., Jansen, K., Rolim, J.D.P. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 448–461. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bhattacharyya, A., Grigorescu, E., Jung, K., Raskhodnikova, S., Woodruff, D.: Transitive-closure spanners. In: SODA, pp. 932–941 (2009)

    Google Scholar 

  7. Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. SIAM J. Comput. 28(1), 210–236 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cohen, E.: Polylog-time and near-linear work approximation scheme for undirected shortest paths. JACM 47(1), 132–166 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cowen, L.: Compact routing with minimum stretch. J. Algorithms 38(1), 170–183 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowen, L., Wagner, C.G.: Compact roundtrip routing in directed networks. J. Algorithms 50(1), 79–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinitz, M., Krauthgamer, R.: Directed spanners via flow-based linear programs. In: Vadhan, S. (ed.) STOC. ACM, New York (to appear, 2011)

    Google Scholar 

  12. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise distance. In: STOC, pp. 750–759 (1999)

    Google Scholar 

  13. Elkin, M.: Computing almost shortest paths. In: PODC, pp. 53–62 (2001)

    Google Scholar 

  14. Elkin, M., Peleg, D.: Strong inapproximability of the basic k-spanner problem. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 636–647. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Elkin, M., Peleg, D.: The client-server 2-spanner problem with applications to network design. In: SIROCCO, pp. 117–132 (2001)

    Google Scholar 

  16. Elkin, M., Peleg, D.: Approximating k-spanner problems for k ≥ 2. Theor. Comput. Sci. 337(1-3), 249–277 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theory Comput. Syst. 41(4), 691–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: Graph distances in the data-stream model. SIAM J. Comput. 38(5), 1709–1727 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating algorithms for Directed Steiner Forest. In: Mathieu, C. (ed.) SODA, pp. 922–931. SIAM, Philadelphia (2009)

    Google Scholar 

  20. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with applications to data privacy. Electronic Colloquium on Computational Complexity (ECCC) TR11-057 (2011)

    Google Scholar 

  21. Kortsarz, G., Peleg, D.: Generating sparse 2-spanners. J. Algorithms 17(2), 222–236 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kortsarz, G.: On the hardness of approximating spanners. Algorithmica 30(3), 432–450 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Peleg, D., Schäffer, A.A.: Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. JACM 36(3), 510–530 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Raskhodnikova, S.: Transitive-closure spanners: a survey. In: Goldreich, O. (ed.) Property Testing. LNCS, vol. 6390, pp. 167–196. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Transactions on Algorithms 4(3) (2008)

    Google Scholar 

  28. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA, pp. 1–10. ACM, New York (2001)

    Google Scholar 

  29. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52(1), 1–24 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berman, P., Bhattacharyya, A., Makarychev, K., Raskhodnikova, S., Yaroslavtsev, G. (2011). Improved Approximation for the Directed Spanner Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds) Automata, Languages and Programming. ICALP 2011. Lecture Notes in Computer Science, vol 6755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22006-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22005-0

  • Online ISBN: 978-3-642-22006-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics