Skip to main content

Students Discover Organic Chemistry: A Phenomena-Oriented and Inquiry-Based Network Concept (PIN-Concept)

  • Chapter
  • First Online:
Essentials of Chemical Education

Abstract

The Phenomena-oriented and Inquiry-based Network-Concept (PIN-Concept) is a curriculum for the training of interconnected thinking in the field of fundamental organic chemistry. It has been developed by Harsch and Heimann [121] for the chemical and didactical education of prospective teachers at universities, and for practicing chemistry teachers and their classes at grammar schools. The PIN-Concept turned out to be motivating and effective for teachers’ training and for chemistry classes at stage 10–11 (age 16–17). Good experience has also been gained with some simplified components from the PIN-Concept at stages 8–9, but this has not yet been investigated systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harsch G, Heimann R (1998) Didaktik der Organischen Chemie nach dem PIN-Konzept. Vom Ordnen der Phänomene zum vernetzten Denken. Springer, Heidelberg

    Book  Google Scholar 

  2. Harsch G, Heimann R (2001) “Selber etwas Wissenschaftler spielen, das fand ich gut …” Ein evaluiertes Unterrichtskonzept zur Organischen Chemie in der gymnasialen Oberstufe. Schüling, Münster

    Google Scholar 

  3. Harsch G, Heimann R (1995) Organische Chemie im Vorfeld der Formelsprache. Chemkon 2:151–157

    Article  Google Scholar 

  4. Heimann R, Harsch G (1997) Die Behandlung der Carbonylverbindungen nach dem PIN-Konzept. Chemkon 4:71–76

    Article  Google Scholar 

  5. Harsch G, Heimann R (1996) Wenn das Ganze mehr ist als die Summe seiner Teile: Polyfunktionelle Verbindungen im Chemieunterricht. MNU 49:219–227

    CAS  Google Scholar 

  6. Heimann R, Harsch G (1998) Viele Wege führen zur Essigsäure. PdN-Chemie 47:26–29

    CAS  Google Scholar 

  7. Harsch G, Heimann R (1994) Der Estercyclus – ein experimentelles Projekt zur Schulung des vernetzten Denkens und Handelns. Chemie in der Schule 41:7–18

    Google Scholar 

  8. Heimann R (1999) Einem unbekannten Stoff auf der Spur – Isolierung. Analyse und Strukturaufklärung eines Naturstoffes am Beispiel der Citronensäure. PdN-Chemie 48:26–31

    CAS  Google Scholar 

  9. Harsch G, Heimann R (1995) Schulung des analytischen Denkens am Beispiel von Kohlenhydratnachweisen in Lebensmitteln. PdN-Chemie 44:19–23

    CAS  Google Scholar 

  10. Heimann R, Harsch G (1998) Der experimentelle Weg vom Olivenöl zum Traubenzucker. Die Chemie der Fette und Kohlenhydrate nach dem Phänomenologisch-Integrativen Netzwerkkonzept. Teil 1: Vom Fett zutn Glycerin. Tcil 2: Vom Glycerin zum Traubenzucker. MNU 51:32–38, 95–99

    Google Scholar 

  11. Heimann R, Harsch G (1999) Untersuchungen von Kohlenhydraten in Pflanzen. Ein Weg zur Förderung naturwissenschaftlicher Denk- und Handlungskompetenz. MNU 52:226–232

    CAS  Google Scholar 

  12. Harsch G, Heimann R (1996) Mischungsexperimente nach Plan. Naturwissenschaftliche Kompetenzschulung am Beispiel der Polarität der Alkohole. Chemie in der Schule 43:142–146

    Google Scholar 

  13. Heimann R (2000) Fliissigkeiten in abgestufter Bewegung: Mischungsexperimente fur die Overheadprojektion. PdN-Chemie 49:32–33

    CAS  Google Scholar 

  14. Heimann R (2000) Der experimentelle Weg zum Begriff der homologen Reihe am Beispiel der Alkohole. Chemie in der Schule 47:14–16

    Google Scholar 

  15. Heimann R (2000) Experimentelle Wege zur Isomene. MNU 53:103–108

    CAS  Google Scholar 

  16. Heimann R, Harsch G (2000) Die Ermittlung der molaren Massen organischer Flüssigkeiten unter einheitlichen Bedingungen. Chemkon 5:73–76

    Article  Google Scholar 

  17. Heimann R, Harsch G (1997) NMR-Spektroskopie und Massenspektroskopie im Unterricht – Möglichkeiten zur Schulung naturwissenschaftlicher Denk- und Handlungskompetenz. PdN-Chemie 46:8–14

    CAS  Google Scholar 

  18. Harsch G, Heimann R, Jansen E (1992) Die Sprache der Phänomene. Eine Überblicksmatrix zur qualitativen organischen Analytik im Unterricht. Chemie in der Schule 39:358–363

    Google Scholar 

  19. Harsch G, Heimann R (1995) Konkretheit und Verknüpfung in aktuellen Chemieschulbuechern am Beispiel der Organischen Chemie. Chimica didactica 21:149–167

    Google Scholar 

  20. Harsch G, Heimann R (1996) Das PIN-Konzept: Ein Phänomenologisch-lntegratives Netzwerkkonzept zum Aufbau einer erfahrungsgesteuerten Wissensstruktur im Bereich des organisch-chemischen Grundlagenwissens. In: Gräber W, Bolte E (eds) Fachwissenschaft und Lebenswelt. Chemiedidaktische Forschung und Unterricht, vol 153. IPN Monographie, Kiel, pp 73–108

    Google Scholar 

  21. Harsch G, Heimann R (1997) Organic chemistry as precursor for formula language. In: Gräber W, Bolte C (eds) Scientific literacy. An international symposium. IPN Monographie, Kiel, pp 415–38

    Google Scholar 

  22. Schlösser K (1975) Muß die Organische Chemie immer so spät im Chemieunterricht einsetzen? NiU 436–440

    Google Scholar 

  23. Wenck H (1980) Organische Chemie in der Sekundarstufe I – Hypothesen und Erfahrungen. In: Härtel H (Hrsg) Zur Didaktik der Physik und Chemie. Schroedel, Hannover, pp 166–169

    Google Scholar 

  24. Wenck H, Kruska G (1989) Wird der Chemieunterricht durch frühzeitige Behandlung der Organischen Chemie attraktiver? NiU PC 37:4–9

    Google Scholar 

  25. Christen HR (1987) Warum nicht mit der Organischen Chemie beginnen? Vortrag Sommersymposium der Chemiedidaktiker in NRW, Bielefeld

    Google Scholar 

  26. Sumfleth E (1988) Lehr- und Lernprozesse im Chemieunterricht. Lang, Frankfurt

    Google Scholar 

  27. Sumfleth E (1985) Systematisierungshilfen – von Gedächtnisstrukturen abgeleitete Lernhilfen. Chimica didactica 10:141–153

    Google Scholar 

  28. Sumfleth E (1985) Lernhilfen für den problemlösenden Unterricht. Chimica didactica 11:63–88

    Google Scholar 

  29. Aebli H (1980/81) Denken: Das Ordnen des Tuns. Klett-Cotta, Stuttgart, 2 Bde

    Google Scholar 

  30. Miller GA (1956) The magical number seven, plus or minus two – some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  CAS  Google Scholar 

  31. Johnstone AH, Letton KM (1982) Recognising functional groups. Educ Chem 19:16–19

    Google Scholar 

  32. Johnstone HA, Wham AJB (1982) The demands of practical work. Educ Chem 19:71–73

    CAS  Google Scholar 

  33. Johnstone HA (1984) New stars for the teacher to steer by. J Chem Educ 62:847–849

    Article  Google Scholar 

  34. Muckenfuß H (1995) Lernen im sinnstiftenden Kontext. Entwurf einer zeitgemäßen Didaktik des Physikunterrichts. Cornelsen, Berlin

    Google Scholar 

  35. Huntemann H, Paschmann A, Parchmann I, Ralle B (1999) Chemie im Kontext – ein neues Konzept für den Chemieunterricht? Darstellung einer kontextorientierlen Konzeption für den 11. Jahrgang. Chemkon 6:191–196

    Article  Google Scholar 

  36. Parchmann I, Ralle B, Demuth R (2000) Chemie im Kontext – Eine Konzeption zum Aufbau und zur Aktivierung fachsystematischer Strukturen in lebensweltorientierten Fragestellungen. MNU 53:132–137

    Google Scholar 

  37. Gräber W, Stork H (1984) Die Entwicklungspsychologie Jean Piagets als Mahnerin und Helferin des Lehrers im naturwissenschaftlichen Unterricht. MNU 37:193–201, 257–269

    Google Scholar 

  38. Stork H (1979) Zum Verhältnis von Theorie und Empirie in der Chemie. Der Chemieunterricht CU 10:45–61

    CAS  Google Scholar 

  39. Reiners C (1992) Naturwissenschaftliche Erklaerungen. Rezepte oder Konzepte für die Chemiedidaktik? PdN-Chemie 1/41:41–44, 2/41:43–46

    Google Scholar 

  40. Liebig J (1844) Chemische Briefe. Akad. Verlangshandlung von C.F. Winter, Heidelberg

    Google Scholar 

  41. Herron JD (1975) Piaget for chemists. Explaining what good students cannot understand. J Chem Educ 52:146–150

    Article  CAS  Google Scholar 

  42. Shayer M, Adey P (1989) Towards a science of science teaching. Cognitive development and curriculum demand. Heinemann, Oxford

    Google Scholar 

  43. Lawson AE (1985) A review of research on formal reasoning and science teaching. J Res Sci Teach 22:569–617

    Article  Google Scholar 

  44. Häußler P, Bünder W, Duit R, Gräber W, Mayer J (1998) Naturwissenschaftsdidaktische Forschung. Perspektiven für die Unterrichtspraxis. IPN, Kiel, v.a. Abschnitt 6.2

    Google Scholar 

  45. Flint A, Jansen W (1990) Ethanol – Probleme der Aufklärung der Konstitutionsformel und des SN2-Reaktionsmechanismus im Chemieimterricht der gymnasialen Oberstufe. PdN-Chemie 39:35–40

    Google Scholar 

  46. Geske D, Sandner A, Pauly C, Anft M, Kaminski B, Matuschek G, Flint A, Jansen W (1991) Neuer Weg zum Beweis der Konstitutionsformel des Ethanolmoleküls. Chemie in der Schule 2:86–91

    Google Scholar 

  47. Hallstein H (1991) Die experimentelle Ermittlung der Konstitutionsformel des Ethanols. Ein Beitrag zur, “Rettung” eines grundlegenden Schulversuchs. MNU 44:371–376

    Google Scholar 

  48. Thiemann F, Flint A, Jansen W (1994) Zur Ermittlung der Konstitutionsformel des Ethanolmoleküls. MNU 8:478–482

    Google Scholar 

  49. Fickenfrerichs H, Jansen W, Kenn M, Peper R, Ralle B (1981) Die Ermittlung der Summenfortneln leicht verdampfender organischer Flüssigkeiten. PdN-Chemie 30:362–367

    Google Scholar 

  50. Wegner G (1993) Ermittlung der Molekülformeln organischer Verbindungen. Chemie in der Schule 40:268–272

    Google Scholar 

  51. Wegner G (1994) Ermittlung der Molekül- und Konstitutionsformeln flüssiger organischer Stoffe. Chemie in der Schule 41:49–55

    Google Scholar 

  52. Wegner G (1994) Bestimmung der molaren Masse von Alkoholen (Ethanol und Methanol) und anderen leicht verdampfbaren Flüssigkeiten. Chemkon 1:134–137

    Article  Google Scholar 

  53. Flint A, Jansen W, Peper R, Fickenfrerichs H (1987) Die Strukturaufklärung des Ethanols – eine an der geschichtlichen Entwicklung orientierte Unterrichtseinheit. NiU-PC 35:28

    Google Scholar 

  54. Matuschek C, Jansen W, Peper-Bienzeisler R, Fickenfrerichs H (1985) Aldehyde – eine an der Entdeckungsgeschichte orientierte Unterrichtskonzeption. PdN-Chemie 34:7–19

    CAS  Google Scholar 

  55. Hermanns R (1985) Erfahrungsbericht zur Unterrichtskonzeption, Aldehyde. PdN-Chemie 34:19–23

    Google Scholar 

  56. Kaminski B, Flint A, Ralle B, Jansen W (1992) Der Reaktionsmechanismus der Ether bildung aus Ethanol und Schwefelsäure im Chemieunterricht. MNU 45:490–498

    CAS  Google Scholar 

  57. Kaminski B, Flint A, Jansen W (1993) Vereinfachter Versuch der Ethersynthese. NiU-Chemie 17:32–33

    Google Scholar 

  58. Wiederholt E, Meinhardt E, Fahrney V (1993) Reaktionsprodukte von Ethanol mit Schwefelsäure. Gaschromatographische Analyse. PdN-Chemie 3:14–17

    Google Scholar 

  59. Schmidt HJ, Küppershaus E (1978) Der experimentelle Einstieg in die Organische Chemie über das Ethylen. PdN-Chemie 12:309–316

    Google Scholar 

  60. Armbrust R, Jansen W (1976) Darstellung von Aethen und Propen durch Cracken von n-Hexan im Schulversuch. PdN-Chemie 12:321–329

    Google Scholar 

  61. Jansen W, Pöpping J, Ralle B, Peper R (1981) Vom Ethen und Propen zu Aldehyden. Ketonen und Säuren. Technische. Synthesen im Schulversuch. NiU-P/C 29:98–102

    CAS  Google Scholar 

  62. Ralle B, Bode U (1991) Die Hydrierung einfacher Kohlenwasserstoffe bei Raumtemperatur. PdN-Chemie 40:18–23

    CAS  Google Scholar 

  63. Ralle B, Bode U (1993) Hydrierung von Ethin und Ethen. Bestimmung der Reaklions-enthalpie. PdN-Chemie 2:29–33

    Google Scholar 

  64. Kolbe H (1849) Untersuchungen über die Elektrolyse organischer Verbindungen. Annalen der Chemie und Pharmacie 69:257–294

    Article  Google Scholar 

  65. Becker HJ (1977) Zum Nachweis des bei der Elektrolyse einer Natriumethanatlösung gebildeten Ethans. PdN-Chemie 7:179–183

    Google Scholar 

  66. Becker HJ (1979) Zur Darstellung von Ethan durch Elektrolyse einer Natriumethanatlösung. PdN-Chemie 12:321–323

    Google Scholar 

  67. Becker HJ (1999) Ethandarstellung im Schulversuch. Chemkon 6:26

    Google Scholar 

  68. Oetken M, Hogen K (1997) Die Kolbe-Synthese. Chemkon 4:83–84

    Google Scholar 

  69. Menig J, Bader HJ, Flintjer B (1998) Unerwartete Reaktionswege bei der Kolbe-Elek- trolyse. Organische Elektrochemie im Chemieunterricht. Chemkon 5:174–180

    Article  Google Scholar 

  70. Schlösser K, Schmidt H (1979) Probleme bei der Planung des chemischen Gleichgewichts – Unterrichtseinheit zum Estergleichgewicht. NiU-P/C 1:13–29

    Google Scholar 

  71. Steiner D, Härdtlein M, Gehring M (1997) Das Estergleichgewicht. Möglichkeiten und Grenzen eines Schulversuchs. Chemkon 4:110–116

    Article  Google Scholar 

  72. Sumfleth E, Ruhmann H (1984) Ein Vorschlag zur Strukturierung der Inhalte des Chemieunterrichts in der Sekundarstufe II am Beispiel der Citronensäure. – Nachweise und Isolierung. MNU 37:224–227

    Google Scholar 

  73. Sumfleth E, Gramm A, Dannat P (1986) Analytik der Citronensäure – eine Unterrichts reihe für die Jahrgangsstufe 13. MNU 39:415–426

    Google Scholar 

  74. Sumfleth E, Crispien K-D (1987) Ein Vorschlag zur Erarbeitung der organisch-chemi schen Reaktionsmechanismen ausgehend vom Beispiel der Citronensäure. MNU 40:229–231

    CAS  Google Scholar 

  75. Blume R, Wiechoczek D (1996) Die Gewinnung von Citronensäure mit einem Kationen-austauscher. MNU 5:289–291

    Google Scholar 

  76. Oswald B, Hildebrand A, Wenck H (2000) Citronensäurecyclus – Für den Chemieunterricht zu schwierig? PdN-ChiS 49:24–29

    CAS  Google Scholar 

  77. Dietrich V (1999) Zur Behandlung der Milchsäure im Chemieunterricht. PdN-Chemie 7/48:6–11

    Google Scholar 

  78. Huntemann H, Parchmann I (2000) Biologisch abbaubare Kunststoffe. Einordnung in ein neues Konzept für den Chemieunterricht. Chemkon 7:15–21

    Article  Google Scholar 

  79. Menzel P (1993) Ethyllactat – ein umweltschonendes Lösungsmittel. PdN-Chemie 3:20–21

    Google Scholar 

  80. Stübs R, Wegner G, Lifson K (1996) Der Konservierungsstoff Sorbinsäure im chemischen Schulexperiment. Chemkon 3:129–133

    Article  Google Scholar 

  81. Blume R, Bader HJ, Plauschinat M (1982) Neue Aspekte der Ascorbinsäure – Chemie. PdN-Chemie 10:289–298

    Google Scholar 

  82. Haselhoff H-P, Mauch J (1989) Das Vitamin-C-Projekt. Eine Unterrichtseinheit für das naturwissenschaftliche Praktikum. Diesterweg u. Sauerlaender, Frankfurt u Aarau

    Google Scholar 

  83. de Rijke PJ, van der Veer W (1992) Ascorbinsäure – quantitative Untersuchungen von Vitamin C einschließlich qualitativer Schulversuche. PdN-Chemie 41:21–31

    Google Scholar 

  84. Deifel A (1993) Die Chemie der L-Ascorbinsäure in Lebensmitteln. ChiuZ 27:198–207

    CAS  Google Scholar 

  85. Harsch G, Heimann R, Heinrich S (2002) Wie erzieht man Schueler zum komplexen Denken? Ein Unterrichtsbaustein für die gymnasiale Oberstufe am Beispiel der Dicarbonsaeuren. Chemkon 9(Heft 1):6–12

    Google Scholar 

  86. Cary WR (1984) State of the art in the high school curriculum. J Chem Educ 61:856–857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Dieter Barke .

Experimental Details

Experimental Details

9.1.1 Test Reactions as Analytical Tools

9.1.1.1 Cerium Nitrate Test

  • Reagent: 40 g cerium ammonium nitrate are dissolved in 100 ml nitric acid (c = 2 mol/l).

  • Procedure: 1 ml cerium ammonium nitrate reagent is to be diluted with 2 ml water. Add 5 drops of the test substance and shake well. Let rest for 5 min and observe.

  • Result: A color change from yellow to red (or orange) indicates molecules with alcohol groups.

  • Note: Alcohol molecules make red colored complexes with hexanitratocerate ions.

  • Diethyl acetal is hydrolyzed (acid catalysis) to ethanol and acetaldehyde; the alcohol makes the test positive.

Sometimes, the red color, indicating an alcohol group, disappears immediately or slowly, and the solution becomes colorless. This indicates that cerium ions Ce4+ have been reduced to Ce3+, and that the test substance has been oxidized.

For example, ethanol is oxidized to acetaldehyde (after heating), 2-propanol to acetone, lactic acid to acetaldehyde and carbon dioxide, citric acid to acetone and carbon dioxide. These reactions can be discovered by the students when they make the cerium nitrate test with these substances in a larger scale in a synthesis apparatus (Fig. 9.3) and investigate the distillates with the reactions.

9.1.1.2 Bromothymol Blue Test (BTB test)

  • Reagent: 0.02 g bromothymol blue and 0.6 g sodium hydroxide have to be dissolved in 100 ml ethanol.

  • Procedure: 1-ml test substance is to be added to 1-ml BTB reagent. Mix it well and observe.

  • Result: A color change from blue to yellow/orange indicates molecules with carboxylic acid groups.

  • Note: The test is also positive with inorganic acids. Therefore, the detection of carboxylic acid groups is only conclusive in the absence of inorganic acids.

  • If the test substance is not soluble (e.g., stearic acid), heating is helpful for detecting the carboxylic acid groups.

9.1.1.3 Phenolphthalein Test (Rojahn test)

  • Reagent 1: 0.1 g phenolphthalein is dissolved in 100 ml ethanol.

  • Reagent 2: Sodium hydroxide solution (c = 3 mol/l).

  • Procedure: 1 ml of the test substance and 3 drops phenolphthalein solution are added to 1 ml ethanol. Sodium hydroxide solution is then to be added drop wise (constant shaking) until a permanent pink color is observed which even resists vigorous shaking. (It is very important to only add as much sodium hydroxide solution as needed to change the indicator to pink.) The test tube with the solution is then to be put into a water bath (40°C). It needs to be taken out after every minute to shake it. The test can be stopped, when a discoloration is observed. Otherwise, the test tube has to be observed for a maximum of 10 min.

  • Result: Discoloration of the pink phenolphthalein solution indicates molecules with ester groups.

  • Note: Esters are hydrolyzed in the alkaline test solution, and the consumption of hydroxide ions is indicated by phenolphthalein.

For the detection of ester groups in fat molecules, propanol is needed as a solvent instead of ethanol.

Lactic acid gives a positive test result because of intermolecular esterification. This is a nice exception, which can be used as a problem for inquiry learning.

This test was introduced by Carl August Rojahn (1889–1938) who was a Professor for Pharmacy and Food Chemistry at the University of Halle (Germany).

9.1.1.4 Dinitrophenylhydrazine Test (DNPH Test)

  • Reagent 1: A mixture of 186 ml water, 33 ml hydrochloric acid (37%), and 1 g 2,4-dinitrophenyl-hydrazine are to be stirred well for 15 min. Undissolved ingredients are then to be removed by filtration.

  • Procedure: To 1 ml DNPH reagent in a test tube is to be added one drop of the test substance. A stopper is to be put on the test tube which is to be shaken for 15 s and observed for another 45 s.

  • Result: A yellow or orange precipitate (sometimes only a milky turbidity) indicates molecules with aldehyde or ketone groups.

  • Note: the carbonyl groups of aldehydes or ketones react with the amino group of the DNPH reagent and make an insoluble yellow or orange hydrazone.

    For the detection of carbonyl groups in sugar molecules, heating with a boiling water bath (5 min) is necessary.

    Diethyl acetal is hydrolyzed (acid catalysis) to the ethanol and acetaldehyde; the aldehyde makes the test positive.

9.1.1.5 Fehling Test

  • Reagent 1: 7 g CuSO4 ·H2O are dissolved in 100 ml water.

  • Reagent 2: 35 g sodium potassium tartrate and 10 g sodium hydroxide are dissolved in 100 ml water.

  • Procedure: 1 ml reagent 1 and 1 ml reagent 2 are mixed. The mixture is deep blue or purple and clear. Then 1 ml test substance and a boiling chip are added. After shaking the sample is put into a boiling water bath. The test can be stopped when a precipitate or turbidity is observed. Otherwise it is observed for a maximum of 5 min.

  • Result: A red or reddish brown precipitate of copper oxide Cu2O at the bottom of the test tube (often a small amount) indicates molecules with an Acetyl group.

  • Note: Aldehydes are oxidized by copper ions Cu2+ in alkaline solution to acid ions; Cu2+ ions are reduced to Cu1+, and these ions form insoluble red copper oxide Cu2O.

Not only glucose but also fructose gives a positive test result because of rapid isomerization in the alkaline solution, in contrast to saccharose.

Diethyl acetal gives a negative test result because acetals are not hydrolized in alkaline solutions. (Note that saccharose is also an acetal!)

This test reaction was discovered by Hermann Fehling (1812–1885) who was a Professor for Chemistry at the University of Stuttgart (Germany).

9.1.1.6 Copper Sulfate Test

  • Reagent 1: Copper sulfate in water (c = 0.1 mol/l).

  • Reagent 2: Sodium hydroxide in water (c = 3 mol/l).

  • Procedure: 1 ml of the liquid test sample (or a small spatula amount of a solid sample) is dissolved in 1 ml copper sulfate solution. The mixture must be clear. Then 5 drops of sodium hydroxide solution are added drop by drop (continuous shaking).

  • Result: A color change from light blue to deep blue or purple without a permanent precipitate (the solution must be clear after adding 5 drops of sodium hydroxide solution) indicates molecules with alcohol groups on adjacent carbon atoms (diol groups).

  • Note: In the copper sulfate test, the test substance (diol) has the same function as the tartrate ions (they are diols) in the Fehling test: They form deep blue and stable chelate compounds with Cu2+ ions in alkaline solution.

9.1.1.7 Bromine Test

  • Reagent: 10 drops of bromine are dissolved in 250 ml water.

  • Procedure: 2 ml test substance (or 1 spatula) are dissolved or suspended in 2 ml bromine water. The solution is shaken well. (Close the test tube with a stopper and use gloves.)

  • Result: Decolorization indicates molecules with double bonds (alkenes).

  • Note: Decolorization occurs by addition of bromine molecules to the double bonds of the test molecules. (The addition products are colorless.)

    If bromine is only extracted from the water phase into the organic phase without decolorization (e.g., with alkanes or esters as test substances), the test is negative.

9.1.1.8 Iodoform Test (Lieben Test)

  • Reagent 1: 12.7 g iodine and 25.4 g potassium iodide dissolved in 100 ml water.

  • Reagent 2: Sodium hydroxide in water (c = 3 mol/l).

  • Procedure: To 0.5 ml test substance are added 1 ml iodine solution (brown) and without delay sodium hydroxide solution in 1 ml steps, if the substance is still brown.

    After every 1 ml step, the test tube has to be shaken, until the solution becomes yellow and clear. Then the test tube is observed for 5 min.

  • Result: A yellow or pale precipitate (often only a slight turbidity) indicates molecules with special functional groups, namely:

Type 1: Acetyl groups of aldehydes and ketones

Type 2: Special alcohol groups with the structure

Type 3: Special ester groups with the structure

  • Note: Esters of type 3 are hydrolyzed in the alkaline test solution to alcohols of type 2, and these are oxidized by iodine to acetyl groups of type 1, which after iodination of the methyl group are cleaved to iodoform I3CH and an acid ion in the alkaline solution.

This complex and valuable test reaction has been discovered by Adolf Lieben (1836–1914) who was a Professor for Chemistry at the Universities of Paris (France), Palermo, Turin (Italy), and Vienna (Austria).

9.1.1.9 Iron Chloride Test

  • Reagent 1: 8 g iron chloride FeCl3 ·6H2O dissolved in 100 ml water.

  • Reagent 2: Amyl alcohol (1-pentanol).

  • Reagent 3: 0.1 g phenolphthalein dissolved in 100 ml ethanol.

  • Reagent 4: Sodium hydroxide solution (c = 3 mol/l).

  • Reagent 5: Hydrochloric acid (c = 0.5 mol/l).

  • Procedure: To 10 drops of the test substance and 2 drops phenolphthalein, sodium hydroxide solution is to be added drop by drop until the phenolphthalein indicator just changes to pink. Then the solution is discolored without delay by adding one drop of hydrochloric acid (or a few, if necessary). If the solution warmed up, it has to be cooled down to room temperature.

    Now, 2 drops of iron chloride solution and 1.5 ml amyl alcohol are to be added. The stoppered test tube has to be shaken vigorously for 5 s. Wait until the two phases separate.

  • Result: The test is positive if an orange color can be observed in the upper or lower phase. This indicates carboxylic acid molecules with short chains. With formic acid and acetic acid, the lower phase is orange; with propanoic acid and butanoic acid, the upper phase is orange.

  • Note: The iron chloride test does not work directly with the carboxylic acids, but with their salts. The purpose of the first step of the procedure is therefore to neutralize the carboxylic acids. (This step is not necessary for the salts, of course.) The acid ions form orange complexes with the iron ions. The complexes with propanoate and butanoate prefer the unpolar amyl alcohol (upper phase), whereas the more polar complexes with formiate and acetate prefer the lower water phase.

    The iron chloride test is negative with mineral acids, in contrast to the BTB test. However, it is limited to short-chain carboxylic acids.

9.1.1.10 Dichromate Test

  • Reagent: 2.35 g potassium dichromate are to be dissolved in 150 ml water. Then 8 ml concentrated sulfuric acid have to be added. After stirring, fill up with water to 200 ml.

    This reagent is poisonous. Use gloves. Pay special attention to solid dichromate, because it is carcinogen. Do not inhale dichromate dust.

  • Procedure: To 2 ml dichromate reagent are added 4 drops test substance and a boiling chip. The sample is to be put into a boiling water bath for 5 min.

  • Result: A color change from orange to green or brown indicates molecules which are oxidizable (e.g., primary and secondary alcohols, aldehydes, esters, and other compounds) under the test conditions. Alkanes, ketones, and mono carboxylic acids (exception: formic acid) are not oxidizable.

  • Note: The dichromate test should be used only by experienced students, who are aware of the necessary safety conditions. Another possibility is to restrict this test to teachers’ demonstrations, or even omit it because it is not strictly necessary as an analytical tool. (Note that for synthesis the dichromate reagent can be substituted by potassium permanganate.)

9.1.2 Syntheses

9.1.2.1 Esterification

With the purified product (ca. 15 ml), only the Rojahn test is positive. Additionally, the iodoform test should be made. It is positive as it should be for ethyl acetate, but only a slight turbidity is observable.

  • Note: In the same way, propyl propionate can be synthesized from propanol and propanoic acid. This time, the iodoform test is negative as it should be. The yield is ca. 20 ml.

  • Procedure: In an Erlenmeyer flask (100 ml), 20 ml ethanol, 20 ml ethanoic acid, and 5 ml sulfuric acid (conc.) are mixed. Shake the mixture well. It warms up spontaneously. Let it stand for 5 min and pour it then into another Erlenmeyer flask (100 ml) containing 75 ml water. Immediately, an organic phase separates in the neck of the flask. It smells like an ester.

    Test the crude product by means of analytical tests (Rojahn test, cerium nitrate test, BTB test, iron chloride test).

    In order to purify the crude product, transfer it with a pipe into a flask (100 ml), add the double volume of sodium carbonate solution (c = 1 mol/l) and shake the unstoppered flask well, until the gas evolution (CO2) is finished. Then stopper the flask and shake well. Let the phases separate.

    Investigate the upper phase (purified product) with the tests.

  • Result: With the crude product, the four tests are all positive. From this it can be concluded that an ester has been produced which is still contaminated with alcohol and acids.

9.1.2.2 Ester Hydrolysis

  • Procedure: In a flask (250 ml), put 60 ml sodium hydroxide solution (c = 3 mol/l) and 15 ml ethyl acetate. Stopper the flask and shake it vigorously for 2 min. Then pour the reaction mixture by means of a funnel into a distillation apparatus (Fig. 9.3) and distil with a boiling water bath for 15 min. (Cover the upper part of the apparatus with an aluminum foil.) Investigate both the distillate and the residue with the analytical tests. Note that the residue must be acidified with sulfuric acid (c = 1.5 mol/l) before making the tests. (Mix 5 ml residue with 4.5 ml sulfuric acid.)

  • Result: Ethyl acetate is hydrolyzed in alkaline solution into ethanol (distillate) and acetate (residue). In the distillate, only the cerium nitrate test, the iodoform test, and the dichromate test are positive. This is the pattern of ethanol.

    In the residue, the iron chloride test is positive (lower phase orange) indicating the presence of ethanoic acid (or acetate). The BTB test is also positive, but it is not conclusive for carboxylic acids because the residue was acidified with sulfuric acid.

  • Note: Propyl propanoate is more stable than ethyl acetate. It is hydrolyzed only very slowly. In this case, it is better to let the mixture stand for a week and then shake it again vigorously before distilling it. But even then, the ester is not completely hydrolyzed.

9.1.2.3 Oxidation

  • Procedure: In a synthesis apparatus (Fig. 9.3), 12 drops of the oxidizable substance (ethanol, 1-propanol, 2-propanol, ethyl acetate, diethyl acetal) are mixed with 14 ml dichromate synthesis reagent (82.0 g K2Cr2O7 dissolved in 12.5 ml water and 1.5 ml conc. H2SO4). Use a funnel to put the reagent into the apparatus and a magnetic stirrer. Heat the oil bath to ca. 120°C and distil at this temperature for 10 min. Cool the distillation receiver with ice water. A charcoal absorber is not necessary in this case. Investigate the colorless distillate with the tests.

  • Result: In all cases, the reaction mixture changes its color immediately from orange to dark green or brown. This indicates that the substances are oxidized.

    With ethanol, ethyl acetate, and diethyl acetal as educts, the distillate gives a positive test only with the BTB test and with the iron chloride test (lower phase orange). This indicates that the educts have been completely converted into ethanoic acid.

    With 1-propanol, propanoic acid is found in the distillate. (In the iron chloride test, the upper phase is orange.)

    With 2-propanol as an educt, the distillate makes the DNPH test and the iodoform test positive; all other tests are negative. It can be concluded that 2-propanol has been oxidized to acetone.

  • Note: The dichromate synthesis reagent has not the same concentration as the reagent for the analytical dichromate test. Pay attention to the safety recommendations (see 1.10).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barke, HD., Harsch, G., Schmid, S. (2012). Students Discover Organic Chemistry: A Phenomena-Oriented and Inquiry-Based Network Concept (PIN-Concept). In: Essentials of Chemical Education. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21756-2_9

Download citation

Publish with us

Policies and ethics