Skip to main content

Biological Preliminaries

  • Chapter
  • First Online:
Biomechanics of the Gravid Human Uterus

Abstract

The nonpregnant human uterus is a hollow, thick-walled, organ situated deeply in the pelvic cavity. It measures on average 7.5 cm in length, 5 cm in breadth, at its upper part, and nearly 2.5–4 cm in thickness (Fig. 1.1). Anatomically the organ is divided into: (1) the fundus, (2) the body, (3) the uterotubal angles, and (4) the cervix. A region between the body and the cervix is call the isthmus. The cervix of the uterus is connected to the vagina. It is conical or cylindrical in shape, with the truncated apex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adaikan PG, Adebiyi A (2005) Effect of functional modulation of Ca2+- activated Cl currents on gravid rat myometrial activity. Indian J Pharmacol 37:21–25

    Article  CAS  Google Scholar 

  • Ambrus G, Rao CV (1994) Novel regulation of pregnant human myometrial smooth muscle cell gap junctions by human chorionic gonadotrophin. Endocrinology 135:2772–2779

    Article  PubMed  CAS  Google Scholar 

  • Anwer K, Sanborn B (1989) Changes in intracellular free calcium in isolated myometrial cells: role of extracellular and intracellular calcium and possible involvement of guanine nucleotide-sensitive proteins. Endocrinology 124:17–23

    Article  PubMed  CAS  Google Scholar 

  • Asboth G, Phaneuf S, Europe-Finner GN, Toth M, Lopez-Bernal A (1996) Prostaglandin E2 activates phospholipase C and elevates intracellular calcium in cultured myometrial cells: involvement of EP1 and EP3 receptors subtypes. Endocrinology 137:2572–2579

    Article  PubMed  CAS  Google Scholar 

  • Asboth G, Phaneuf S, Lopez-Bernal AL (1997) Prostaglandin receptors in myometrial cells. Acta Physiol Hung 85:39–50

    PubMed  CAS  Google Scholar 

  • Bardou M, Rouget C, Breuiller-Fouché M, Loustalot C, Naline E, Sagot P, Freedman R, Morcillo E, Advenier C, Leroy MJ, Morrison JJ (2007) Is the beta3-adrenoceptor (ADRB3) a potential target for uterorelaxant drugs? BMC Pregnancy Childbirth. doi:10.1186/1471-2393-7-S1-S14

  • Belmonte A, Ticconi C, Dolci S, Giorgi M, Zicari A, Lenzi A, Jannini EA, Piccione E (2005) Regulation of phosphodiesterase 5 expression and activity in human pregnant and non-pregnant myometrial cells by human chorionic gonadotrophin. J Soc Gynecol Investig 12:570–577

    Article  PubMed  CAS  Google Scholar 

  • Blanks AM, Shmygol A, Thornton S (2007) Myometrial function in prematurity. Best Pract Res Clin Obstet Gynaecol 21:807–819

    Article  PubMed  Google Scholar 

  • Brainard AM, Miller AJ, Martens JR, England S (2005) Maxi-K+ channel localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol 289:C49–C57

    Article  PubMed  CAS  Google Scholar 

  • Brodt-Eppley J, Myatt L (1999) Prostaglandin receptors in lower segment myometrium during gestation and labor. Obstet Gynecol 93:89–93

    Article  PubMed  CAS  Google Scholar 

  • Burghardt RC, Barhoumi R, Sanborn BM, Andersen J (1999) Oxytocin-induced Ca2+ responses in human myometrial cells. Biol Reprod 60:777–782

    Article  PubMed  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M (1996) Focal adhesions, contractility, and signaling. Ann Rev Cell Dev Biol 12:463–518

    Article  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chan EC, Fraser S, Yin S, Yeo G, Kwek K, Fairclough RJ, Smith R (2002) Human myometrial genes are differentially expressed in labor: a suppression subtractive hybridization study. J Clin Endocrinol Metab 87:2435–2441

    Article  PubMed  CAS  Google Scholar 

  • Chanrachakul B, Pipkin FB, Khasn RN (2004) Contribution of coupling between human myometrial beta2-adrenoreceptor and the BKCa channel to uterine quiescence. Am J Physiol Cell Physiol 287:C1747–C1752

    Article  PubMed  CAS  Google Scholar 

  • Chapman NR, Kennelly MM, Harper KA, Europe-Finner GN, Robson SC (2006) Examining the spatio-temporal expression of mRNA encoding the membrane-bound progesterone receptor-alpha isoform in human cervix and myometrium during pregnancy and labour. Mol Hum Reprod 12:19–24

    Article  PubMed  CAS  Google Scholar 

  • Chien EK, Saunders T, Phillippe M (1996) The mechanism underlying Bay K 8644-stimulated phasic myometrial contractions. J Soc Gynecol Investig 3:106–112

    Article  PubMed  CAS  Google Scholar 

  • Coleman RA, Smith WL, Narumiya S (1994) Internatinal Union of Pharmacology classification of prostanoid receptors:properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46:205–229

    PubMed  CAS  Google Scholar 

  • Collins PL, Moore JJ, Idriss E, Kulp TM (1996) Human fetal membranes inhibit calcium L-channel activated uterine contractions. Am J Obstet Gynecol 175:1173–1179

    Article  PubMed  CAS  Google Scholar 

  • Cordeaux Y, Pasupathy D, Bacon J, Charnock-Jones DS, Smith GCS (2009) Characterization of serotonin receptors in pregnant human myometrium. J Pharmacol Exp Ther 328:682–691

    Article  PubMed  CAS  Google Scholar 

  • Dahle LO, Andersson RG, Berg G, Hurtig M, Ryden G (1993) Alpha adrenergic receptors in human myometrium: changes during pregnancy. J Soc Gynecol Investig 36:75–80

    Article  CAS  Google Scholar 

  • Doheny HC, Houlihan DD, Ravikumar N, Smith TJ, Morrison JJ (2003) Human chorionic gonadotrophin relaxation of human pregnant myometrium and activation of the BKCa channel. J Clin Endocrinol Metab 88:4310–4315

    Article  PubMed  CAS  Google Scholar 

  • Elliott CL, Slatter DM, Denness W, Poston L, Bennett PR (2000) Interleukin 8 expression in human myometrium: changes in relation to labor onset and with gestational age. Am J Reprod Immunol 43:272–277

    Article  PubMed  CAS  Google Scholar 

  • Engstrøm T, Bratholm P, Vihardt H, Christensen NJ (1999) Effect of oxytocin receptor and β2-adrenoceptor blockade on myometrial oxytocin receptors in parturient rats. Biol Reprod 60:322–329

    Article  PubMed  Google Scholar 

  • Eta A, Ambrus G, Rao CV (1994) Direct regulation of human myometrial contractions by human chorionic gonadotrophin. J Clin Endocrinol Metab 79:1582–1586

    Article  PubMed  CAS  Google Scholar 

  • Ferre F, Uzan M, Janssens Y, Tanguy G, Jolivet A, Breuiller M, Sureau C, Cedard L (1984) Oral administration of micronized natural progesterone in late human pregnancy. Effects on progesterone and estrogen concentrations in the plasma, placenta, and myometrium. Am J Obstet Gynecol 148:26–34

    PubMed  CAS  Google Scholar 

  • Fitzgibbon J, Morrison JJ, Smith TJ, O’Brien M (2009) Modulation of human smooth muscle cell collagen contractility by thrombin, Y-27632, TNF alpha and indomethacin. Reprod Biol Endocrinol. doi:10.1186/1477-7827-7-2

  • Fuchs AR, Fuchs F, Husslein P, Soloff MS (1984) Oxytocin receptors in the human uterus during pregnancy and parturition. Am J Obstet Gynecol 150(6):734–741

    PubMed  CAS  Google Scholar 

  • Gabella G (1984) Structural apparatus for force transmission in smooth muscle. Physiol Rev 64:455–477

    PubMed  CAS  Google Scholar 

  • Garfield RE, Maner WL, Mackay LB, Schlembach D, Saade GR (2005) Comparing uterine electromyography activity of antepartum patients versus term labor patients. Am J Obstet Gynecol 193:23–29

    Article  PubMed  Google Scholar 

  • Garfiled RE, Maner WL (2007) Physiology of electrical activity of uterine contractions. Semin Cell Dev Biol 18(3):289–295

    Article  CAS  Google Scholar 

  • Gerthoffer WT, Gunst S (2001) Focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J Appl Physiol 91:963–972

    PubMed  CAS  Google Scholar 

  • Giannopoulos G, Jackson K, Kredester J, Tulchinski D (1985) Prostaglandin E and F2alpha receptor in human myometrium during the menstrual cycle and in pregnancy and labor. Am J Obstet Gynecol 153:904–912

    PubMed  CAS  Google Scholar 

  • Gimpl G, Fahrenholz F (2001) The oxytocin receptor system: structure, function, and regulation. Physiol Rev 81:629–683

    PubMed  CAS  Google Scholar 

  • Gunja-Smith Z, Woessner JF (1985) Content of the collagen and elastin cross-links pyridinoline and the desmonies in the human uterus in various reproductive states. Am J Obstet Gynecol 153:92–95

    PubMed  CAS  Google Scholar 

  • Hamada Y, Nakaya Y, Hamada S, Kamada M, Aono T (1994) Activation of K channels by ritodrine hydrochloride in uterine smooth muscle cells from pregnant women. Eur J Pharmacol 288:45–51

    Article  PubMed  CAS  Google Scholar 

  • Hartzell C, Putzier I, Arreola J (2005) Calcium-activated chloride channels. Annu Rev Physiol 67:719–758

    Article  PubMed  CAS  Google Scholar 

  • Hertelendy F, Zakar T (2004) Regulation of myometrial smooth muscle functions. Curr Pharm Des 10:2499–2517

    Article  PubMed  CAS  Google Scholar 

  • Horoba K, Jezewski J, Wrobel J, Graczyk S (2001) Algorithm for detection of uterine contractions from electrohysterogram. In: Proceedings, 23rd annual conference, IEEE/EMBS, October 25–28, Istanbul, Turkey

    Google Scholar 

  • Ilic D, Damsky CH, Yamamoto T (1997) Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 110:401–407

    PubMed  CAS  Google Scholar 

  • Inoue Y, Nakao K, Okabe K, Izumi H, Kanda S, Kitamura K, Kuriyama H (1990) Some electrical properties of human pregnant myometrium. Am J Obstet Gynecol 162:1090–1098

    PubMed  CAS  Google Scholar 

  • Jan LY, Jan YN (1994) Potassium channels and their evolving gates. Nature 371:119–122

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, McCullough JR (1975) Ion current sin the uterine smooth muscle. J Physiol 246(1):1–36

    PubMed  CAS  Google Scholar 

  • Karteris E, Zervou S, Pang Y, Dong J, Hillhouse EW, Randeva HS, Thomas P (2006) Progesterone signaling in human myometrium through two novel membrane G protein coupled receptors: potential role in functional progesterone withdrawal. Mol Endocrinol 20:1519–1534

    Article  PubMed  CAS  Google Scholar 

  • Khac LD, Arnaudeau S, Lepretre N, Mironneau J, Harbon S (1996) Beta adrenergic receptor activation attenuates the generation of inositol phosphates in the pregnant rat myometrium. Correlation with inhibition of Ca2+ influx, a cAMP-independent mechanism. J Pharmacol Exp Ther 276:130–136

    PubMed  CAS  Google Scholar 

  • Khan RN, Matharoo-Ball B, Arulkuraman S, Ashfold MLJ (2001) Potassium channels in the human myometrium. Exp Physiol 86.2:255–264

    Article  PubMed  CAS  Google Scholar 

  • Kilarski WM, Rothery S, Roomans GM, Ulmsten U, Rezapour M, Stevenson S, Coppen SR, Dupont E, Severs NJ (2001) Multiple connexins localized to individual gap-junctional plaques in human myometrial smooth muscle. Microsc Res Tech 54:114–122

    Article  PubMed  CAS  Google Scholar 

  • Kiputtayanant S, Lucas MJM, Wray S (2002) Effects of inhibiting the sarcoplasmic reticulum on spontaneous and oxytocin-induced contractions of human myometrium. Br J Obstet Gynaecol 109:289–296

    Article  Google Scholar 

  • Korovkina VP, Brainard AM, England SK (2006) Translocation of an endoproteolytically cleaved maxi-K channel isoform: mechanisms to induce human myometrial repolarization. J Physiol 573:329–341

    Article  PubMed  CAS  Google Scholar 

  • Kotani M, Tanaka I, Ogawa Y, Suganami T, Matsumoto T, Muro S, Yamamoto Y, Sugawara A, Yoshimasa Y, Sagawa N, Narumiya S, Nakao K (2000) Multiple signal transduction pathways through two prostaglandin E receptor EP3 subtype isoforms expressed in human uterus. J Clin Endocrinol Metab 85:4315–4322

    Article  PubMed  CAS  Google Scholar 

  • Kryzhanovskaya-Kaplun EF, Martynshin MY (1974) Electrohysterography based on recording fast uterine potentials in women. Bull Eksper Biol Med 78:8–11 (in Russian)

    Google Scholar 

  • Kuriyama H, Kitamura K, Itoh T, Inoue R (1998) Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 78:811–920

    PubMed  CAS  Google Scholar 

  • Ledoux J, Greenwood IA, Leblanc N (2005) Dynamics of Ca2+ – dependent Cl channel modulation by niflumic acid in rabbit coronary arterial myocytes. Mol Pharmacol 67:163–173

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Daud AN, Cribbs LL, Lacerda AE, Pereverzev A, Klockner U, Schneider T, Perez-Reyes E (1999) Cloning and expression of a novel member of the low voltage-activated T-type calcium channel family. J Neurosci 19:1912–1921

    PubMed  CAS  Google Scholar 

  • Lee SE, Ahn DS, Lee YH (2009a) Role of T-type Ca2+ channels in the spontaneous phasic contractions of pregnant rat uterine smooth muscle. Korean J Physiol Pharmacol 13:241–249

    Article  PubMed  CAS  Google Scholar 

  • Lee SL, Tan E, Khullar V, Gedroyc W, Darzi A, Yang GZ (2009b) Physical-based statistical shape modeling of the levator ani. IEEE Trans Med Imaging 28(6):926–936

    Article  PubMed  Google Scholar 

  • Leppert PC, Yu SY (1991) Three-dimensional structures of uterine elastic fibers: scanning electron microscopic studies. Connect Tissue Res 27:15–31

    Article  PubMed  CAS  Google Scholar 

  • Li X, Kruger J, Nash M, Nielsen P (2009) Modeling fetal head motion and its mechanical interaction with the pelvic floor during childbirth. 39th Annual meeting of the international continence society, San Francis, USA. http://www.ses.auckland.ac.nz/uoa/home/about/our-research-2/publications-15/2009-publications

  • Li X, Kruger JA, Nash MP, Nielsen PMF (2009b) Modeling childbirth: elucidating the mechanisms of labor. WIREs Syst Biol Med 2:460–470

    Article  Google Scholar 

  • Li Y, Gallant C, Malek S, Morgan KG (2007) Focal adhesion signaling is required for myometrial EKR activation and contractile phenotype switch before labor. J Cell Biochem 100:129–140

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Je HD, Malek S, Morgan KG (2003) ERK1/2-mediated phosphorylation of caldesmon during pregnancy and labor. Am J Physiol 284:R192–R199

    CAS  Google Scholar 

  • Li Y, Reznichenko M, Tribe RM, Hess P, Taggart M, Kim H, DeGnore JP, Gangopadhyay S, Morgan KG (2009c) Stretch activates human myometrium via ERK, caldesmon and focal adhesion signaling. PLoS One 4(10):e7489

    Article  PubMed  CAS  Google Scholar 

  • Liang Z, Sooranna SR, Engineer N, Tattersalt M, Khanjani S, Bennet PR, Myatt L, Johnson MR (2008) Prostaglandin F2-alpha receptor regulation in human uterine myocytes. Mol Hum Reprod 14:215–223

    Article  PubMed  CAS  Google Scholar 

  • Lin PC, Li X, Lei ZM, Rao CV (2003) Human cervix contains functional luteinizing hormone/human chorionic gonadotropin receptors. J Clin Endocrinol Metab 88(7):3409–3414

    Article  PubMed  CAS  Google Scholar 

  • Liu YL, Nwosu UC, Rice PJ (1998) Relaxation of isolated human myometrial muscle by β2 - adrenergic receptors but not β1 -adrenergic receptors. Am J Obst Gynecol 179:895–898

    Article  CAS  Google Scholar 

  • Longbottom ER, Luckas MJM, Kupittayanant S, Badrick E, Shmigol A, Wray S (2000) The effects of inhibiting myosin light chain kinase on contraction and calcium signaling in human and rat myometrium. Pflügers Arch 440:315–321

    PubMed  CAS  Google Scholar 

  • Loudon JAZ, Sooranna SR, Bennett PR, Johnson MR (2004) Mechanical stretch of human uterine smooth muscle cells increases IL-8 mRNA expression and peptide synthesis. Mol Hum Reprod 10:895–899

    Article  PubMed  CAS  Google Scholar 

  • MacIntyre DA, Tyson EK, Read M, Smith R, Yeo G, Kwek K, Chan E-C (2008) Contraxction in human myometrium is associated with changes in small heart shock proteins. Endocrinology 149(1):245–252

    Article  PubMed  CAS  Google Scholar 

  • MacPhee DJ, Lye SJ (2000) Focal adhesion signaling in the rat myometrium is abruptly terminated with the onset of labor. Endocrinology 141(1):274–283

    Article  PubMed  CAS  Google Scholar 

  • Marque CK, Terrien J, Rihana S, Germain G (2007) Preterm labor detection by use of a biophysical marker: the uterine electrical activity. BMC Pregnancy Childbirth. doi:10.1186/14771-2393-7-S1-S5

  • Mershon JL, Mikala G, Schwartz A (1994) Changes in the expression of L-type calcium channel during pregnancy and parturition in rat. Biol Reprod 51:993–999

    Article  PubMed  CAS  Google Scholar 

  • Metaxa-Mariatou V, McGavigan CJ, Robertson K, Stewart C, Cameron IT, Campbell S (2002) Elastin distribution in the myometrial and vascular smooth muscle in the human uterus. Mol Hum Reprod 8:559–565

    Article  PubMed  CAS  Google Scholar 

  • Mhaouty-Kodja S, Houdeau E, Legrand C (2004) Regulation of myometrial phospholipase C system and uterine contraction by β-adrenergic receptors in midpregnant rat. Biol Reprod 70:570–576

    Article  PubMed  CAS  Google Scholar 

  • Molnar M, Hertelendy F (1990) Regulation of intracellular free calcium in human myometrium. J Clin Endocrinol Metab 85:3468–3475

    Google Scholar 

  • Monteil A, Chemin J, Leuranguer V, Altier C, Mennessier G, Bourinet E, Lory P, Nargeot J (2000) Specific properties of T-type calcium channels generated by the human a1I subunit. J Biol Chem 275:16530–16535

    Article  PubMed  CAS  Google Scholar 

  • Moss SB, Getton GL (2001) A-kinase anchor proteins in endocrine systems and reproduction. Trends Endocrinol Metab 12:434–440

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi H, Wood C (1971) Cholinergic mechanisms in the human uterus. J Obst Gynaecol Br Commonw 78(8):716–723

    Article  CAS  Google Scholar 

  • Oldenhof AD, Shynlova OP, Liu M, Langille BL, Lye SJ (2002) Mitogen-activated protein kinases mediate stretch-induced c-fos mRNA expression in myometrial smooth muscle cell. Am J Physiol Cell Physiol 283:C1530–C1539

    PubMed  CAS  Google Scholar 

  • Olson DM, Zaragoza DB, Shallow MC, Cook JL, Mitchell BF, Grigsby P, Hirst J (2003) Myometrial activation and preterm labour: evidence supporting a role for the prostaglandin F receptor – a review. Placenta 24:S47–S54

    Article  PubMed  CAS  Google Scholar 

  • Osmers RG, Adelmann-Grill BC, Rath W, Stuhlatz HW, Tchesche H, Kuhn W (1995a) Biocehmical events in cervical ripening dilatation during pregnancy and parturition. Am J Obstet Gynecol 166:1455–1460

    Google Scholar 

  • Osmers RG, Balser J, Kuhn W, Tchesche H (1995b) Interleukin-8 synthesis and the onset of labor. Obstet Gynecol 86:223–229

    Article  PubMed  CAS  Google Scholar 

  • Parkington HC, Coleman HA (2001) Excitability in uterine smooth muscle. Front Horm Res 27:179–200

    Article  PubMed  CAS  Google Scholar 

  • Parkington HC, Tonta MA, Brennecke S, Coleman HA (1999) Contractile activity, membrane potential, and cytoplasmic calcium in human uterine smooth muscle in the third trimester of pregnancy and during labor. Am J Obstet Gynecol 181:1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Patak E, Candenas ML, Pennefather JN, Ziccone S, Lilley A, Martin JD, Flores C, Mantecon AG, Story ME, Pinto FM (2003) Tachykinins and tachykinin receptors in human uterus. Br J Pharmacol 139:523–532

    Article  PubMed  CAS  Google Scholar 

  • Patak E, Ziccone S, Story ME, Fleming AJ, Lilley A, Pennefather JN (2000) Activation of neurokinin NK2 receptors by tachykininn peptides casues contraction of uterus in pregnant women near term. Mol Hum Reprod 6:549–554

    Article  PubMed  CAS  Google Scholar 

  • Pieber D, Allport VC, Hills F, Johnson M, Bennett PR (2001) Interactions between progesterone receptor isoforms in myometrial cells in human labour. Mol Hum Reprod 7:875–879

    Article  PubMed  CAS  Google Scholar 

  • Planes JG, Morucci JP, Grandjean H, Favretto A (1984) External recording and processing of fast electrical activity of the uterus in human parturition. Med Biol Eng Comput 22(6):585–591

    Article  PubMed  CAS  Google Scholar 

  • Popescu LM, Ciontea SA, Cretoiu D (2007) Interstitial Cajal-like cells in human uterus and fallopian tubes. Ann NY Acad Sci 1101:139–165

    Article  PubMed  CAS  Google Scholar 

  • Pressman EK, Tucker JA, Anderson NC Jr, Young RC (1988) Morphologic and electrophysiologic characterization of isolated pregnant human myometrial cells. Am J Obstet Gynecol 159(5):1273–1279

    PubMed  CAS  Google Scholar 

  • Price SA, Bernal AL (2001) Uterine quiescence: the role of cyclic AMP. Exp Physiol 86(2):265–272

    Article  PubMed  CAS  Google Scholar 

  • Ramon C, Preissl H, Murphy P, Wilson JD, Lowery C, Eswaran H (2005a) Synchronization analysis of the uterine magnetic activity during contractions. Biomed Eng.

    Google Scholar 

  • Ramon C, Preissl H, Murphy P, Wilson JD, Lowery C, Hari E (2005b) Synchronization analysis of the uterine magnetic activity during contractions. Biomed Eng.

    Google Scholar 

  • Rezapour M, Backstrom T, Ulmsten U (1996) Myometrial steroid concentration and oxytocin receptor density in parturient women at term. Steroids 61(6):338–344

    Article  PubMed  CAS  Google Scholar 

  • Robinson EE, Foty RA, Corbett SA (2004) Fibronectin matrix assembly regulates alpha5 beta1-mediated cell adhesion. Mol Biol Cell 15:973–981

    Article  PubMed  CAS  Google Scholar 

  • Roh CR, Lee BL, Oh WJ, Whang JD, Choi DS, Yoon BK, Lee JH (1999) Introduction of c-Jun mRNA without changes of estrogen and progesterone receptor expression in myometrium during human labor. J Korean Med Sci 14:552–558

    PubMed  CAS  Google Scholar 

  • Rouget C, Bardou M, Breuiller-Fouché M, Loustalot C, Qi H, Naline E, Croci T, Carbol D, Advenier C, Leroy MJ (2005) β3-Adrenoceptor is the predominant β-adrenoceptors type in human myometrium and its expression is regulated in pregnancy. J Clin Endocrinol Metab 90:1644–1650

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Tabb T, Garfiled R (1992) Studies of connexin 43 and cell-to-cell coupling between myometrial cells of the human uterus during pregnancy. Am J Obstet Gynecol 167:1267–1277

    PubMed  CAS  Google Scholar 

  • Salomonis N, Cotte N, Zambon AC, Pollard KS, Vranizan K, Doniger SW, Dolganov G, Conklin BR (2005) Identifying gene networks underlying myometrial transition to labor. Genome Biol 6:R12

    Article  PubMed  Google Scholar 

  • Sanborn BM, Dodge KL, Monga M, Quian A, Wang W, Yue C (1998a) Molecular mechanisms regulating the effects of oxytocin on myometrial intracellular calcium. Adv Exp Med Biol 449:277–286

    Article  PubMed  CAS  Google Scholar 

  • Sanborn BM, Ku C-Y, Shlykov S, Babicj L (2005) Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig 12:479–487

    Article  PubMed  CAS  Google Scholar 

  • Sanborn BM, Yue C, Wang W, Dodge KL (1998b) G protein signaling pathways in myometrium: affecting the balance between contraction and relaxation. Rev Reprod 3:196–205

    Article  PubMed  CAS  Google Scholar 

  • Shlykov SG, Sanborn BM (2004) Stimulation of intracellular Ca2+ oscillations by diacyglycerol in human myometrial cells. Cell Calcium 36:157–164

    Article  PubMed  CAS  Google Scholar 

  • Shynlova O, Williams SJ, Draper H, White BG, MacPhee DJ, Lye SJ (2007) Uterine stretch regulates temporal and spatial expression of fibronectin protein and its alpha 5 integrin receptor in myometrium of unilaterally pregnant rats. Biol Reprod 77:880–888

    Article  PubMed  CAS  Google Scholar 

  • Small JV, Gimona M (1998) The cytoskeleton of the vertebrate smooth muscle cell. Acta Physiol Scand 164:341–348

    Article  PubMed  CAS  Google Scholar 

  • Smith PG, Garcia R, Kogerman L (1997) Strain reorganizes focal adhesion and cytoskeleton in cultured airway smooth muscle cells. Exp Cell Res 232:127–136

    Article  PubMed  CAS  Google Scholar 

  • Sooranna SR, Grigsby P, Myatt L, Bennett PR, Johnson MR (2005) Prostanoid receptors in human uterine myocytes: the effect of reproductive state and stretch. Mol Hum Reprod 11:859–864

    Article  PubMed  CAS  Google Scholar 

  • Sooranna SR, Lee Y, Ki LU, Mohan AR, Bennett PR, Johnson MR (2004) Mechanical stretch activates type 2 cyclooxigenase via activator protein-1 transcription factor in human myometrial cells. Mol Hum Reprod 10:109–113

    Article  PubMed  CAS  Google Scholar 

  • Tabb T, Thilander G, Grover A, Hertzberg E, Garfield R (1992) An immunochemical and immunocytologic study of the increase in myometrial gap junctions (connexin 43) in rats and humans during pregnancy. Am J Obstet Gynecol 167:559–567

    PubMed  CAS  Google Scholar 

  • Taggart MJ, Wray S (1998) Contribution of sarcoplasmic reticular calcium to smooth muscle contractile activation: gestational dependence in isolated rat uterus. J Physiol 511:133–144

    Article  PubMed  CAS  Google Scholar 

  • Tribe RM (2001) Regulation of human myometrial contractility during pregnancy and labor: are calcium homeostatic pathways important? Exp Physiol 86(2):247–254

    Article  PubMed  CAS  Google Scholar 

  • Willets JM, Taylor AH, Shaw H, Konje JC, Challiss RAJ (2008) Selective regulation of H1 histamine receptor signaling by G protein-coupled receptor kinase 2 in uterine smooth muscle cells. Mol Endocrinol 22(8):1893–1907

    Article  PubMed  CAS  Google Scholar 

  • Williams SJ, White B, MacPhee DJ (2005) Expression of α5 integrin (Itga5) is elevated in the rat myometrium during late pregnancy and labor: implications for development of a mechanical syncytium. Biol Reprod 72:1114–1124

    Article  PubMed  CAS  Google Scholar 

  • Woodward TL, Mienaltowski AS, Bennett JM, Haslam SZ (2001) Fibronectin and the alpha(5)beta(1) integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology 142:3214–3222

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Morgan KG, Jones CJ, Tribe RM, Taggart MJ (2008) Myometrial mechanoadaptation during pregnancy: implications for smooth muscle plasticity and remodeling. J Cell Mol Med 12(4):1360–1373

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Miyamoto S (1995) Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7:681–689

    Article  Google Scholar 

  • Young R, Hession R (1999) Three-dimensional structure of the smooth muscle in the term-pregnant human uterus. Obstet Gynecol 93:94–99

    Article  PubMed  CAS  Google Scholar 

  • Young RC (2007) Myocytes, myometrium, and uterine contractions. Ann NY Acad Sci 1101:72–84

    Article  PubMed  CAS  Google Scholar 

  • Young RC, Henrdon-Smith L (1991) Characterization of sodium channels in cultured human uterine smooth muscle cells. Am J Obstet Gynecol 164(1):175–181

    PubMed  CAS  Google Scholar 

  • Young RC, Smith LH, MacLaren MD (1993) T-type and L-type calcium currents in freshly dispersed human uterine smooth muscle cells. Am J Obstet Gynecol 195:1404–1406

    Google Scholar 

  • Young RC, Zhang P (2005) Inhibition of in vitro contractions of human myometrium by mibefradil, a T-type calcium channel blocker: support for a model using excitation-contraction coupling, and autocrine and paracrine signaling mechanisms. J Soc Gynecol Investig 12:e7–e12

    Article  PubMed  Google Scholar 

  • Yu JT, Bernal L (1998) The cytoskeleton of human myometrial cells. J Reprod Fertil 112:185–198

    Article  PubMed  CAS  Google Scholar 

  • Yuan W, Bernal AL (2007) Cyclic AMP signaling pathways in the regulation of uterine relaxation. BMC Pregnancy Childbirth. doi:10.1186/1471-2393-7-S1-S10

  • Yue C, Dodge KL, Weber G, Sanborn BM (1998) Phosphorylation of serine 1105 by protein kinase A inhibits Cbeta3 stimulation by Galpaq. J Biol Chem 273:18023–18027

    Article  PubMed  CAS  Google Scholar 

  • Zhou XL, Lei ZM, Rao CV (1999) Treatment of endometrial gland epithelial cells with chorionic gonadotrophin/luteinizing hormone increases the expression of the cyclooxygenase-2 gene. J Clin Endocrinol Metab 84:3364–3377

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin A, Zefirova JT, Zefirova TP, Ziganshina LE, Hoyle CHV, Burnstock G (2005) Potentiation of uterine effects of prostaglandin F by adenosine 5′-triphosphate. Obstet Gynecol 105(6):1429–1436

    Article  PubMed  CAS  Google Scholar 

  • Ziganshin AU, Zaitcev AP, Khasanov AA, Shamsutdinov AF, Burnstock G (2006) Term-dependency of P2 receptor-mediated contractile responses of isolated human pregnant uterus. Eur J Obstet Gynecol Reprod Biol 129(2):128–134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roustem N. Miftahof .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miftahof, R.N., Nam, H.G. (2011). Biological Preliminaries. In: Biomechanics of the Gravid Human Uterus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21473-8_1

Download citation

Publish with us

Policies and ethics