Skip to main content

Progress in Phytoremediating Heavy-Metal Contaminated Soils

  • Chapter
  • First Online:
Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Mechanisms of main methods for removing hazardous heavy metal from contaminated soils are summarized with an emphasis on phytoremediation aspects. Applying plants and microbes is preferred because of their cost-effectiveness, environmental friendliness, and fewer side-effects. In the future, the application of genetic engineering and cell engineering to create an expected species would become popular. However, a concomitant and latent danger of genetic pollution is concerned by a few persons. To cope with this potential harm, several suggestions are put forward including choosing self-pollinated plants, creating infertile polyploid species, and carefully selecting easy-controlled microbe species. The authors point out that current investigation of noncrop hyperaccumulators is of little significance in application. Pragmatic development in the future should be crop hyperaccumulators (termed as “cropaccumulators”) by transgenic or symbiotic approach. Considering that no effective plan has been put forward by others about concrete steps of applying a hyperaccumulator to practice, the authors bring forward a set of universal procedures, which is novel, tentative, and adaptive to evaluate hyperaccumulators’ feasibility before large-scale commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arazi T et al (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Arasi ACM (2000) Responses to cadmium in leaves of transformed poplars overexpressing γ-glutamylcysteine synthetase. Physiol Plant 109:143–149

    Article  Google Scholar 

  • Baker AJM et al. (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Baker (ed) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Begley TP et al (1986) Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25:7192–7200

    Article  PubMed  CAS  Google Scholar 

  • Bi RT, Bai ZK, Li H, Shao HB, Li WX, Ye BY (2010) Establishing a clean-quality indicator system for evaluating reclaimed land in the Antaibao opencast mine area, China. Clean – Soil Air Water 38:719–725

    Article  CAS  Google Scholar 

  • Bizily SP et al (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP et al (1999) Phytoremediation of methylmercury pollution merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci USA 96:6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Crowley DE et al (1991) Mechanisms of iron acquisition from siderophores by microorganisms and plants. Plant Soil 130:179–198

    Article  CAS  Google Scholar 

  • De Souza M et al (1998) Rate-limiting steps in selenium assimilation and volatilization by Indian mustard. Plant Physiol 117:1487–1494

    Article  PubMed  Google Scholar 

  • Dubery RS et al (2006) Heavy metal uptake and detoxification mechanism in plants. Int J Agric Res 1:122–141

    Article  Google Scholar 

  • Fox B et al (1982) Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation reduction active disulfide. J Biol Chem 257:2498–2503

    PubMed  CAS  Google Scholar 

  • Geoffrey M et al (2006) Microorganisms in toxic metal-polluted soils. In: Soil biology, vol 3, Microorganisms in soils: roles in genesis and functions. Springer, Berlin, pp 1–69

    Google Scholar 

  • Gisbert C et al (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Article  PubMed  CAS  Google Scholar 

  • Gleba D et al (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci USA 96:5973–5977

    Article  PubMed  CAS  Google Scholar 

  • Heaton ACP et al (1998) Phytoremediation of mercury- and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509

    Article  CAS  Google Scholar 

  • Huysen V (2003) Overexpression of cystathionine-gamma-synthase enhances selenium volatilization in Brasica juncea. Planta 218:71–78

    Article  PubMed  Google Scholar 

  • Hwang S et al (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Article  PubMed  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  PubMed  CAS  Google Scholar 

  • Kashiwa M et al (2001) Removal of soluble selenium by a selenate-reducing bacterium Bacillus sp. SF-1. J Ferment Bioeng 83:517–522

    Google Scholar 

  • Korshunova Y et al (1999) The IRT1 protein from Arabidopsis thaliana. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Kramer U et al (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Kramer U et al (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Article  CAS  Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112(4):1715–1722

    PubMed  CAS  Google Scholar 

  • Lee S et al (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Article  PubMed  CAS  Google Scholar 

  • Li H, Shi WY, Shao HB, Shao MA (2009) The remediation of the lead-polluted garden soil by natural zeolite. J Hazard Mater 169:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Loeffler S et al (1989) Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product. FEBS Lett 258:42–46

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ et al (1991) Microbial stimulation of plant growth and protection from disease. Curr Opin Biotechnol 2:457–464

    Article  CAS  Google Scholar 

  • Mehra RK et al (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  PubMed  CAS  Google Scholar 

  • Misra S (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Article  CAS  Google Scholar 

  • Noji M (2001) Cysteine synthase overexpression in tobacco confers tolerance to sulfur- containing environmental pollutants. Plant Physiol 126:973–980

    Article  PubMed  CAS  Google Scholar 

  • Pan A (1994) Alpha-domain of human metallothionein I-A can bind to metals in transgenic tobacco plants. Mol Gen Genet 242:666–674

    Article  PubMed  CAS  Google Scholar 

  • Pence NS et al (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulation Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    Article  PubMed  CAS  Google Scholar 

  • Pilon M et al (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL et al (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON et al (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Salt DE et al (1995a) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    Google Scholar 

  • Salt DE et al (1995b) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Ruan CJ, Li H, Guo DG, Li WX (2010) Understanding molecular mechanisms for improving phytoremediation of heavy metal-contaminated soils. Crit Rev Biotechnol 30:23–30

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA (2009) Understanding water deficit stress-induced changes in the basic metabolism of higher plants – biotechnologically and sustainably improving agriculture and the eco- environment in arid regions of the globe. Crit Rev Biotechnol 29:131–151

    Article  PubMed  CAS  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4:8–14

    Article  CAS  Google Scholar 

  • Shi WY, Shao HB, Li H, Shao MA, Du S (2009a) Co-remediation of the lead-polluted garden soil by exogenous natural zeolite and humic acids. J Hazard Mater 167:136–140

    Article  PubMed  CAS  Google Scholar 

  • Shi WY, Shao HB, Li H et al (2009b) Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. J Hazard Mater 170:1–6

    Article  PubMed  CAS  Google Scholar 

  • Sriprang R et al (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796

    Article  PubMed  Google Scholar 

  • Sriprang R et al (2002) A novel bioremediation system for heavy metals using the symbiosis between leguminous plant and genetically engineered rhizobia. J Biotechnol 99:279–293

    Article  PubMed  CAS  Google Scholar 

  • Wang XL, Ma XQ (2008) Advance in the research of phytoremediation in heavy metal contaminated soils. Subtrop Agric Res 4:44–49

    Google Scholar 

  • Wangeline AL et al (2004) Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals. J Environ Qual 33:54–60

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW et al (2003) Chelate-assisted phytoextraction using canola (Brassica napus L) in outdoors pot and lysismeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • Winge DR et al (1985) Yeast metallothionein: sequence and metal-binding properties. J Biol Chem 260:14464–14470

    PubMed  CAS  Google Scholar 

  • Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  PubMed  CAS  Google Scholar 

  • Yang PG, Mao RZ, Shao HB, Gao YF (2009) An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. J Hazard Mater 167:1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Yang SG et al (2007) Experiment on Eisenia foetida for pre-compost of chook manure. Chin J Eco-agric 15:55–57

    CAS  Google Scholar 

  • Yuebing S et al (2007) Phytoremediation and strengthening measures for soil contaminated by heavy metals. Chin J Environ Eng 1:23–28

    Google Scholar 

  • Zhao M et al (1999) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–573

    Article  PubMed  Google Scholar 

  • Zhu YL (1999a) Overexpression of gluthatione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79

    Article  CAS  Google Scholar 

  • Zhu YL (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamilcysteine synthetase. Plant Physiol 121:1169–1177

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by the National Natural Science Foundation of China (No. 41001137), The Science and Technology Development Plan of Shandong Province (2010GSF10208), The Science and Technology Development Plan of Yantai City (20102450), One Hundred-Talent Plan of Chinese Academy of Sciences (CAS), the CAS/SAFEA International Partnership Program for Creative Research Teams, the Important Direction Project of CAS (KZCX2-YW-JC203) and CAS Young Scientists Fellowship (2009Y2B211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao Hongbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hongbo, S., Liye, C., Gang, X., Kun, Y., Lihua, Z., Junna, S. (2011). Progress in Phytoremediating Heavy-Metal Contaminated Soils. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_4

Download citation

Publish with us

Policies and ethics