Skip to main content

Physical Phenomena Related to Free Volumes in Rubber and Blends

  • Chapter
  • First Online:
Advances in Elastomers II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 12))

Abstract

In the present chapter, different aspects related to free volumes and the physical phenomena involving free volumes in rubbers and blends are discussed. Experimental results were obtained using conventional experimental techniques (e.g. dynamic mechanical tests, differential scanning calorymetry and swelling) and principally a non-conventional one (positron annihilation lifetime spectroscopy—PALS). PALS has demonstrated a high capability to give direct information on free volumes. Due to its significant role in the study of nanoscopic effects in molecular systems (among them polymers), the physical grounds of the technique are explained. It is also illustrated how PALS detects free nanohole volumes and gives information on their changes as a consequence of different reactions induced in polymers. Based on the latest experience of the authors, some examples of PALS studies on NR and SBR rubbers and NR/SBR blends are presented. The results obtained are discussed using a modern scientific approach to the study of physicals processes in these elastomers; i.e. the analysis of the experimental information is given into the frame of well recognized theoretical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, from the analysis of PALS spectra a continuous distribution of the o-Ps lifetimes, and therefore of hole radii, is obtained. So, according to Ref. [23] from an estimation of the distribution of the inverse lifetime ξ(1/τ o-Ps ) the hole radius probability density fraction \( {f}(R) \) can be obtained as follows

    $$ f(R) = 2\delta R\left( {\cos \frac{2\pi R}{R + \delta R} - 1} \right)\frac{{\xi ({1 \mathord{\left/ {\vphantom {1 {\tau_{\sigma - Ps} )}}} \right. \kern-0pt} {\tau_{\sigma - Ps} )}}}}{{\left( {R + \delta R} \right)^{2} }} $$
    (3)

    Then, it is easy to obtain the hole volume density distribution as \( g(v_{h} ) = {{f(R)} \mathord{\left/ {\vphantom {{f(R)} {4\pi R^{2} }}} \right. \kern-0pt} {4\pi R^{2} }} \) which represents the volume fraction of holes as determined by o-Ps annihilation with volumes between v h and v h  + dv h is g(v h ) dv h [17, 24]. Then, from g(v h ) can be calculated the number fraction of holes.

    In Ref. [25] we studied the evolution of the free volume during vulcanization in SBR. In this work, for each sample instead of analyzing the o-Ps lifetimes as discrete ones we assumed the corresponding τo-Ps as continuum distributions and then, using Eq. (3) we obtained the different g(v h ). Then, we found that all g(v h ) consisted of one skewed peak and extended from about 20  to 450 Å3 approximately. Results are discussed in Sect. 4. Another example can be found in Ref. [19] in which the authors correlated the size, numerical concentration, and size distribution of free volumes with the nanostructure of different degree of crosslinkage cured polysiloxanes induced by thermal treatments. On the other hand, Dlubek et al. [17] estimated the free nanohole volume distribution in polycarbonate and polystyrene a room temperature.

    However, it is worth mentioning that for the analysis of the o-Ps lifetime component is normally accepted as a good approximation the use of the most probable free volume size as a representative parameter of g(v h ).

References

  1. Doolittle, A.K.: J. Appl. Phys. 22, 1031 (1951)

    Article  CAS  Google Scholar 

  2. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  3. Consolati, G.: Mater. Sci. Forum 363–365, 244 (2001)

    Article  Google Scholar 

  4. Victor, J.G., Torkelson, J.M.: Macromolecules 20, 2241 (1987)

    Article  CAS  Google Scholar 

  5. Suzuki, T., Yoshimizu, H., Tsujita, Y.: Polymer 44, 2975 (2003)

    Google Scholar 

  6. Bruno, G.V., Freed, J.H.: J. Phys. Chem. 78, 935 (1974)

    Article  CAS  Google Scholar 

  7. Curro, J.J., Roe, R.R.: Polymer 25, 1424 (1984)

    Article  CAS  Google Scholar 

  8. Jean, Y.C., Mallon, P.E., Schrader, D.M. (eds.): Principles and Applications of Positron and Positronium Chemistry. World-Scientific, London (2003)

    Google Scholar 

  9. Brandt, W., Dupasquier, A. (eds.): Positron Solid-State Physics., North- Holland, Amsterdam (1983)

    Google Scholar 

  10. Dupasquier, A., Kögel, G., Somoza, A.: Acta Mater. 52, 4707 (2004)

    Article  CAS  Google Scholar 

  11. Salgueiro, W., Somoza, A., Cabrera, O., Consolati, G.: Cem. Concr. Res. 34, 91 (2004)

    Article  CAS  Google Scholar 

  12. Jean, Y.C.: Microchem. J. 42, 72 (1990)

    Article  CAS  Google Scholar 

  13. Jean, Y.C.: Mater. Sci. Forum 59, 175 (1995)

    Google Scholar 

  14. Dlubek, G., Fretwell, H.M., Alam, M.A.: Macromolecules 33, 87 (2000)

    Google Scholar 

  15. Krause-Rehberg, R., Leipner, H.S.: Positron Annihilation in Semiconductors. Springer, Berlin (1999)

    Book  Google Scholar 

  16. Dupasquier A., Mills, A.P. Jr (eds.): Positron Spectroscopy of Solids. IOP Press, Amsterdam (1995)

    Google Scholar 

  17. Dlubek, G., Clarke, A.P., Fretwell, H.M., Dugdale, S.B., Alam, M.A.: Phys. Stat. Sol. (a) 157, 351 (1996)

    Article  CAS  Google Scholar 

  18. Hristov, H.A., Bolan, B., Lee, A.F., Xie, L., Gidley, D.G.: Macromolecules 29, 8507 (1996)

    Article  CAS  Google Scholar 

  19. Li, H.-L., Ujihira, Y., Yoshino, T., Yoshii, K., Yamashita, T., Horie, K.: Polymer 39, 4075 (1998)

    Article  CAS  Google Scholar 

  20. Tao, S.J.: J. Chem. Phys. 56(1972), 5499 (1972)

    Article  CAS  Google Scholar 

  21. Eldrup, M., Lightbody, D., Sherwood, N.J.: Chem. Phys. 63, 51 (1981)

    Article  CAS  Google Scholar 

  22. Nakanishi H., Wang Y.Y., Jean Y.C., Sharma S.C. (eds.): Positron Annihilation Studies of Fluids, p. 292. World Scientific, Singapore (1988)

    Google Scholar 

  23. Kanaya, T., Tsukushi, T., Kaji, K., Bartos, J., Kristiak, J.: Phys. Rev. E 60, 1906 (1999)

    Article  CAS  Google Scholar 

  24. Gregory, R.B.: J.Appl.Phys. 70, 4665 (1991)

    Article  CAS  Google Scholar 

  25. Marzocca, A.J., Cerveny, S., Salgueiro, W., Somoza, A., Gonzalez, L.: Phys. Rev. E 65, 021801 (1-5) (2002)

    Google Scholar 

  26. Srithawatpong, R., Peng, Z.L., Olson, B.G., Jamieson, A.M., Simha, R., McGerwey, J.D., Maier, T.M., Halasa, A.F., Ishida, H.: J. Polym. Sci., Part B: Polym. Phys. 37, 2754 (1999)

    Article  CAS  Google Scholar 

  27. Simha, R., Somcynsky, T.: Macromolecules 2, 342 (1969)

    Article  CAS  Google Scholar 

  28. Simha, R., Wilson, P.S., Olabisi, O.: Kolloid-Z. Z. Polym. 251, 402 (1973)

    Article  CAS  Google Scholar 

  29. Bondi, A.A.: Physical Properties of Molecular Crystals, Liquids and Glasses. Wiley, New York (1968) (ch. 14)

    Google Scholar 

  30. Ferry, J.D.: Viscoelastic Properties of Polymers, p. 264. Wiley, New York (1980) (Cap.11)

    Google Scholar 

  31. Bartoš, J., Bandžuch, P., Šauša, O., Krištiaková, K., Krištiak, J., Kanaya, T., Jenninger, W.: Macromolecules 30(22), 6906–6912 (1997)

    Google Scholar 

  32. Bartoš, J., Colloid, J.: Polym. Sci. 274, 14 (1996)

    Google Scholar 

  33. Bandžuch, P., Krištiak, J., Šauša, O., Zrubcová, J.: Phys Rev B 61, 8784 (2000)

    Article  Google Scholar 

  34. Wanga, Z.F., Wang, B., Qi, N., Zhang, H.F., Zhang, L.Q.: Polymer 46, 719 (2005)

    Article  Google Scholar 

  35. Wang, J., Vicent, J., Quarles, C.A.: Nucl Instrum Methods Phys Res B 241, 271–275 (2005)

    Article  CAS  Google Scholar 

  36. Mohsen, M., Abd-El Salam, M.H., Ashry, A., Ismail, A., Ismail, H.: Polym. Degrad. Stab. 87, 381–388 (2005)

    Article  CAS  Google Scholar 

  37. Jobando, V.O., Quarles, C.A.: Phys. Stat. Sol. (c) 4, 3767 (2007)

    Article  CAS  Google Scholar 

  38. Akiba, M., Hashim, S.: Prog. Polym. Sci. 22, 475 (1997)

    Article  CAS  Google Scholar 

  39. Marzocca, A.J., Mansilla, M.A.: J. Appl. Polym. Sci. 103, 1105 (2007)

    Article  CAS  Google Scholar 

  40. Mason, P.: Polymer 5, 625 (1964)

    Article  CAS  Google Scholar 

  41. Coran, A.Y.: In: Mark, J.E., Erman, B., Eirich, F.R., (eds.) Science and Technology of Rubber, p. 339. Academic Press, San Diego (1978)

    Google Scholar 

  42. Salgueiro, W., Marzocca, A.J., Somoza, A., Consolati, G., Cerveny, S., Quasso, F., Goyanes, S.: Polymer 45, 6037 (2004)

    Google Scholar 

  43. Gronsky, W., Hoffman, U., Simon, G., Wutzler, A., Straube, E.: Rubber Chem. Technol. 65, 63 (1992)

    Article  Google Scholar 

  44. Flory, P.J., Rehner, J.: J Chem Phys 11, 512 (1943)

    Article  CAS  Google Scholar 

  45. Flory, P.J., Rehner, J.: J. Chem. Phys. 11, 521 (1943)

    Google Scholar 

  46. Mark, J.E., Erman, B.: Rubberlike Elasticity: A Molecular Primer, p. 51. Wiley, New York (1988)

    Google Scholar 

  47. Strobl, G.: The Physics of Polymers, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  48. Coran, A.Y.: Rubber Chem. Technol. 61, 281 (1988)

    Article  CAS  Google Scholar 

  49. Utracki, L.A.: Polym. Eng. Sci. 23, 602 (1983)

    Article  CAS  Google Scholar 

  50. Turi, E.A.: Thermal Characterization of Polymeric Materials. Academic Press, New York (1997)

    Google Scholar 

  51. Sakaguchi, T., Taniguchi, N., Urakawa, O., Adachi, K.: Macromolecules 38, 422 (2005)

    Article  CAS  Google Scholar 

  52. Zhao, J., Ediger, M.D., Sun, Y., Yu, L.: Macromolecules 42, 6777 (2009)

    Article  CAS  Google Scholar 

  53. Peng, Z.L., Olson, B.G., Srithawatpong, R., McGervey, J.D., Jamieson, A.M., Ishida, H., Meier, T.M., Halasa, A.F.: J. Polym. Sci., Part B: Polym. Phys. 36, 861 (1998)

    Article  CAS  Google Scholar 

  54. Kovacs, A.J.: Adv. Polymer Sci. 3, 394 (1963)

    Article  Google Scholar 

  55. Akiyama, S., Kawahara, S., Akiba, I., Iio, S., Li, H.-L., Ujihira, Y.: Polym. Bull. 45, 275 (2000)

    Article  CAS  Google Scholar 

  56. Salgueiro, W., Somoza, A., Marzocca, A.J., Torriani, I., Mansilla, M.A.: J. Polym. Sci., Part B: Polym. Phys. 47, 2320 (2009)

    Article  CAS  Google Scholar 

  57. Goyanes, S., Lopez, C.C., Rubiolo, G.H., Quasso, F., Marzocca, A.J.: Eur. Polym. J. 44, 1525 (2008)

    Article  CAS  Google Scholar 

  58. Salgueiro, W., Somoza, A., Consolati, G., Quasso, F., Marzocca, A.J.: Phys. Stat. Sol. (c) 10, 3771 (2007)

    Article  Google Scholar 

  59. Ito, Y., Mohamed, H.F.M., Tanaka, K., Okamoto, K., Lee, K.: J. Radioanal. Nucl. Chem. 211, 211 (1996)

    Article  CAS  Google Scholar 

  60. Bartoš, J., Šauša, O., Krištiak, J., Blochowicz, T., Rössler, E.: J. Phys.: Condens. Matter 13, 11473 (2001)

    Article  Google Scholar 

  61. Bartoš, J., Šauša, O., Bandzuch, P., Zrubcová, J., Krištiak, J.: J. Non-Crystal. Solids 307–310, 417 (2002)

    Article  Google Scholar 

  62. Winberg, P., Eldrup, M., Maurer, F.H.J.: Polymer 45, 8253 (2004)

    Article  CAS  Google Scholar 

  63. McCrum, N.G., Read, B.E., Williams, G.: Anelastic and Dielectric Effects in Polymer Solids. Wiley, London (1967)

    Google Scholar 

  64. Ngai, K.L.: J. Phys.: Condens. Matter 15, 1107 (2003)

    Article  Google Scholar 

  65. Ghilarducci, A., Salva, H., Marzocca, A.J.: J. Appl. Polym. Sci. 113, 2361 (2009)

    Article  CAS  Google Scholar 

  66. Mallon, P.E., McGill, W.J.: J. Appl. Polym. Sci. 74, 1250 (1999)

    Article  CAS  Google Scholar 

  67. Salgueiro, W., Somoza, A., Silva, L., Consolatti, G., Quasso, F., Mansilla M.A., Marzocca, A.J.: Phys. Rev. E. 85, 51805 (2011)

    Google Scholar 

Download references

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2011-1088), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, SECAT (UNCentro) and University of Buenos Aires (Project UBACYT 2010–2012), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Marzocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marzocca, A.J., Salgueiro, W., Somoza, A. (2013). Physical Phenomena Related to Free Volumes in Rubber and Blends. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers II. Advanced Structured Materials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20928-4_10

Download citation

Publish with us

Policies and ethics