Skip to main content

Micro and Nanofillers in Rubbers

  • Chapter
  • First Online:
Advances in Elastomers I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

As a most general definition, filler is a finely divided solid that is used to modify the properties of a material in which it is dispersed. From the inception of the rubber industry, fillers have a crucial role in either providing durability and performance or in reducing the price by decreasing the rubber partition in the compound. The fillers used in rubbers can be divided into two main groups such as black and non-black fillers. Besides the conventional micron size fillers, nanofillers recently have gained both academic and industrial importance. In this chapter, it is aimed to introduce the fillers used in rubbers. Their characteristics and their impact on properties of rubbers are discussed by giving examples from the recently published literature. In addition to the conventional ones, the new emerging nano-fillers and their added value to the rubbers are given in detail by highlighting some selected studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Savran, H.Ö.: Elastomer Teknolojisi I. Kauçuk Derneği Yayınları, İstanbul (2001)

    Google Scholar 

  2. Xanthos, M.: Functional Fillers for Plastics. Wiley-VCH, Germany (2005)

    Google Scholar 

  3. Simpson, R.B.: Rubber Basics. Rapra Technology Ltd., London (2002)

    Google Scholar 

  4. Rodgers, B.: Rubber Compounding Chemistry and Applications. Marcel Dekker Inc., New York (2004)

    Google Scholar 

  5. Ghosh, P.: Polymer Science and Technology, Plastics, Rubbers, Blends and Composites. Tata McGraw-Hill Publishing, New Delhi (2002)

    Google Scholar 

  6. White, J.R., De, S.K.: Rubber Technologist’s Handbook. Rapra Technology Ltd., Shawbury (2001)

    Google Scholar 

  7. ASTM D 1765-00a.: Standard Classification System for Carbon Black Used in Rubber Products. American Society for Testing and Materials, West Conshohocken (2000)

    Google Scholar 

  8. Gachter, R., Müller, H.: Plastics Additives Handbook, 4th edn, pp. 525–561. Hanser/Gardner Publications, Munich (1993)

    Google Scholar 

  9. Vansant, E F., Van Der Voort, P., Vrancken, K.C.: Characterization and Chemical Modification of the Silica Surface. Elsevier Science, Amsterdam (1995)

    Google Scholar 

  10. Ciullo, P.A., Hewitt, N.: The Rubber Formulary. Noyes Publication/William Andrew Publishing, Norwich (1999)

    Google Scholar 

  11. Yan, H., Sun, K., Zhang, Y., Zhang, Y.: Effect of nitrile rubber on properties of silica-filled natural rubber compounds. Polym. Testing 24, 32–38 (2005)

    Article  Google Scholar 

  12. Choi, S.S.: Improvement of properties of silica-filled natural rubber compounds using polychloroprene. J. Appl. Polym. Sci. 83, 2609–2616 (2002)

    Article  CAS  Google Scholar 

  13. Mareri, P., Bastide, S., Binda, N., Crespy, A.: Mechanical behaviour of polypropylene composites containing fine mineral filler: Effect of filler surface treatment. Compos. Sci. Technol. 58, 747–752 (1998)

    Article  CAS  Google Scholar 

  14. Gonzales, J., Albano, C., Ichazo, M., Diaz, B.: Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3. Eur. Polymer J. 38, 2465–2475 (2004)

    Article  Google Scholar 

  15. Ismail, H., Schuhelmy, S., Edyham, M.R.: The effect of silane couple agent on curing characteristics and mechanical properties of bamboo-filled rubber composites. Eur. Polymer J. 38, 39–47 (2002)

    Google Scholar 

  16. Metin, D., Tihminlioğlu, F., Balköse, D., Ülkü, S.: The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites. Compos. A Appl. Sci. Manuf. 35, 23–32 (2004)

    Article  Google Scholar 

  17. Hewitt, N.: Compounding Precipitated Silica in Elastomers. William Andrew Publishing, Norwish (2007)

    Google Scholar 

  18. Ozkoc, G., Bayram, G., Bayramlı, E.: Effects of polyamide 6 incorporation to the short glass fiber reinforced ABS composites: an interfacial approach. Polymer 45, 8957–8966 (2004)

    Article  CAS  Google Scholar 

  19. Plueddemann, E.P.: Silane Coupling Agents, 2nd Edn. Plenum Press, New York (1991)

    Google Scholar 

  20. Whelan, A., Lee, K.S.: Developments in Rubber Technology 1. Applied Science Publishers Ltd, London (1979)

    Google Scholar 

  21. Susmita, S., Bhowmick, A.K.: Effect of chain length of amine and nature and loading of clay on Styrene-Butadiene rubber-clay nanocomposites. Rubber Chem. Technol. 76, 860 (2003)

    Article  Google Scholar 

  22. Wypych, G.: Fillers. ChemTec Publishing, Toronto (1993)

    Google Scholar 

  23. Paul, D.R., Robeson, L.M.: Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008)

    Article  CAS  Google Scholar 

  24. Das, A., Stöckelhuber, K.W., Jurk, R., Jehnichen, D., Heinrich, G.: A general approach to rubber-montmorillonite nanocomposites: Intercalation of stearic acid. Appl. Clay Sci. 51, 117–125 (2011)

    Article  CAS  Google Scholar 

  25. Dennis, H.R., Hunter, D.L., Chang, D., Kim, S., White, J.L., Cho, J.W., Paul, D.R.: Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 42, 9513–9522 (2001)

    Article  CAS  Google Scholar 

  26. Whelan, T.: Polymer Technology Dictionary, 1st edn. Chapman and Hall Publishing, London (1994)

    Book  Google Scholar 

  27. Wang, L.L., Tong, Y.P., Zhang, L.Q., Tian, M.: Comparison of Ethylene-Propylene Diene terpolymer composites filled with natural and synthesized micas. J. Appl. Polym. Sci. 116, 3184–3192 (2010)

    Article  CAS  Google Scholar 

  28. Miles, I.S., Rostami, S.: Multicomponent Polymer Systems. Wiley, New York (1992)

    Google Scholar 

  29. Oscar, F., III Noel.: Talc, the solution to challenges in automotive. Rubber World 28(7), 244 (2011)

    Google Scholar 

  30. Noel, O., Meli, G.: Synergism of talc with carbon black, Technical paper No: 13 presented at the 174th ACS Rubber Division Meeting in Louisville, KY, (October, 2008)

    Google Scholar 

  31. Noel, O., Meli, G., Thakkar, H.: Talc as a dispersion aid for reinforcing fillers in rubbers. Rubber World, Technical meeting of the rubber division, American Chemical Society (2008)

    Google Scholar 

  32. Harper, C.: Handbook of Plastics Technologies. McGraw Hill Handbooks, New York (2006)

    Google Scholar 

  33. Dick, J.S.: Rubber Technology, Compounding and Testing for Performance. Hanser Gardner Publication, Cincinnati (2001)

    Google Scholar 

  34. Morton, M.: Rubber Technology, 3rd edn. Kluwer Academic Publishers, Boston (1987)

    Google Scholar 

  35. Fina, A., Tabuani, D., Frache, A., Camino, G.: Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 46, 7855–7866 (2005)

    Article  CAS  Google Scholar 

  36. Li, G., Wang, L., Ni, H., Pittman, C.U.: Polyhedral Oligomeric Silsesquioxanes (POSS) polymers and copolymers: A review. J. Inorg. Organomet. Polym. 11, 123 (2001)

    Article  CAS  Google Scholar 

  37. Luecke, S., Stoppek-Langner, K.: Polyhedral oligosilsesquioxanes (POSS)-building blocks for the development of nano-structured materials. Appl. Surf. Sci. 713, 144–145 (1999)

    Google Scholar 

  38. Chen, D., Yi, S., Fang, P., Zhong, Y., Huang, C., Wu, X.: Synthesis and characterization of novel room temperature vulcanized (RTV) silicone rubbers using octa[(trimethoxysilyl)ethyl]-POSS as cross-linker. React. Funct. Polym. 71, 502–511 (2011)

    Article  CAS  Google Scholar 

  39. www.hybridplastics.com, “POSS User’s Guide”

  40. Rothon, R.N.: Particulate Fillers for Polymers. Rapra Review Reports (2001)

    Google Scholar 

  41. Alger, M.: Polymer Science Dictionary, 2nd edn. Chapman and Hall, London (1997)

    Google Scholar 

  42. Dick, J.S.: Basic Rubber Testing: Selecting Methods for a Rubber Test Program. ASTM International, Pennsylvania (2003)

    Google Scholar 

  43. Reich, S., Thomsen, C., Maultzsch, J.: Carbon Nanotubes, Basic Concepts and Physical Properties. Wiley-VCH, Germany (2004)

    Google Scholar 

  44. Mahmoud, W.E., El-Mossalamy, E.H., Arafa, H.M.: Improvement of the mechanical and electrical properties of waste rubber with carbon nanotubes. J. Appl. Polym. Sci. 121, 502–507 (2011)

    Article  CAS  Google Scholar 

  45. Zhou, X., Zhu, Y., Liang, J., Yu, S.: New fabrication and mechanical properties of Styrene-Butadiene Rubber/Carbon. J. Mater. Sci. Technol. 26(12), 1127–1132 (2010)

    Article  CAS  Google Scholar 

  46. Kane, C.L., Mele, E.J.: Size, shape and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78(10), 1932 (1997)

    Article  CAS  Google Scholar 

  47. Raymond, M.R.: Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine. J. Nucl. Med. 48, 1039–1042 (2007)

    Article  Google Scholar 

  48. Perez, L.D., Zuluaga, M.A., Kyu, T., Mark, J.E., Lopez, B.L.: Preparation, characterization, and physical properties of multiwall carbon nanotube/elastomer composites. Polym. Eng. Sci. 49, 866–874 (2009)

    Article  CAS  Google Scholar 

  49. Kundu, S.: Surface Modification of Carbon Nanotubes and their Application in Electro-Catalysis, Degree of doctor of natural science. Ruhr University Department of Chemistry, Bochum (2009)

    Google Scholar 

  50. Gong, K., Zhu, X., Zhao, R., Xiong, S., Mao, L., Chen, C.: Rational attachment of synthetic triptycene orthoquinone onto carbon nanotubes for electrocatalysis and sensitive detection of thiols. Anal. Chem. 77, 8158–8165 (2005)

    Article  CAS  Google Scholar 

  51. Fu, S., Y., Feng, X.Q., Lauke, B., Mai, Y.W.: Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Composites. B 39, 933–961 (2008)

    Google Scholar 

  52. Li, Z.H., Zhang, J., Chen, S.J.: Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. Express Polym. Lett. 2(10), 695–704 (2008)

    Article  CAS  Google Scholar 

  53. Soltani, S., Sourki, F.A.: Effect of carbon black type on viscous heating, heat build-up and relaxation behaviour of SBR compounds. Iran. Polym. J. 14(8), 745–751 (2005)

    CAS  Google Scholar 

  54. Saatchi, M.M., Shojaei, A.: Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing. Mater. Sci. Eng. A 528, 7161–7172 (2011)

    Google Scholar 

  55. Fröhlich, J., Niedermeier, W., Luginsland, H.: The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos. A 36, 449–460 (2005)

    Google Scholar 

  56. Nah, C., Lim, J., Y., Cho, B.H., Hong, C.K., Gent, A.N: Reinforcing rubber with carbon nanotubes. J. Appl. Polym. Sci. 118, 1574–1581 (2010)

    Google Scholar 

  57. Nah, C., Lim, J.Y., Sengupta, R., Cho, B.H., Gent, A.N.: Slipping of carbon nanotubes in a rubber matrix. Poly. Int. 60, 42–44 (2011)

    Google Scholar 

  58. Vinod, V.S., Varghese, S., Alex, R., Kuriakose, B.: Effect of aluminum powder on filled natural rubber composites. Rubber Chem. Technol. 74(2), 236–248 (2001)

    Article  CAS  Google Scholar 

  59. Zhou, W., Yu, D., Wang, C., An, Q., Qi, S.: Effect of filler size distribution on the mechanical and physical properties of alumina-filled silicone rubber. Polym. Eng. Sci. 48, 1381–1388 (2008)

    Article  CAS  Google Scholar 

  60. Zhou, W.Y., Qi, S.H., Tu, C.C.: Novel heat-conductive composite silicone rubber. J. Appl. Polym. Sci. 104, 2478 (2007)

    Google Scholar 

  61. Bae, J.W., Kim, W., Cho, S.H.: The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution. J. Mater. Sci. 35, 5907 (2000)

    Google Scholar 

  62. Zhou, W., Qi, S., Tu, C., Zhao, H., Wang, C., Kou, J.: Effect of the particle size of Al2O3 on the properties of filled heat-conductive silicone rubber. J. Appl. Polym. Sci. 104, 1312–1318 (2007)

    Article  CAS  Google Scholar 

  63. Zhang, Q., Tian, M., Wu, Y., Lin, G., Zhang, L.: Effect of particle size on the properties of Mg(OH)2-filled rubber composites. J. Appl. Polym. Sci. 94, 2341–2346 (2004)

    Article  CAS  Google Scholar 

  64. Ismail, H., Rozman, R.H., Jaffri, R.M., Mohd Ishak, Z.A.: Oil palm wood flour reinforced epoxidized natural rubber composites: the effect of filler content and size. Eur. Polym. J. 33, 1627–1632 (1997)

    Article  CAS  Google Scholar 

  65. Mostafa, A., Abouel-Kasem, A., Bayoumi, M.R., El-Sebaie, M.G.: The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Mater. Des. 30, 791–795 (2009)

    Article  CAS  Google Scholar 

  66. Mostafa, A., Abouel-Kasem, A., Bayoumi, M.R., El-Sebaie, M.G.: Effect of carbon black loading on the swelling and compression set behavior of SBR and NBR rubber compounds. Mater. Des. 30, 1561–1568 (2009)

    Article  CAS  Google Scholar 

  67. Ain, Z.N., Azura, A.R.: Effect of different types of filler and filler loadings on the properties of Carboxylated Acrylonitrile-Butadiene rubber latex films. J. Appl. Polym. Sci. 119, 2815–2823 (2011)

    Google Scholar 

  68. Daniele, F.C., Joao, C.M.S., Regina, C.R.N., Leila, L.Y.V.: Effect of mica addition on the properties of natural rubber and polybutadiene rubber vulcanizates. J. Appl. Polym. Sci. 90, 2156 (2003)

    Google Scholar 

  69. Mostafa, A., Abouel-Kasem, A., Bayoumi, M.R., El-Sebaie, M.G.: Insight into the effect of CB loading on tension, compression, hardness and abrasion properties of SBR and NBR filled compounds. Mater. Des. 30, 1785–1791 (2009)

    Article  CAS  Google Scholar 

  70. Nakamura, Y., Honda, H., Harada, A., Fujii, S., Nagata, K.: Mechanical properties of silane-treated, silica-particle-filled polyisoprene rubber composites: Effects of the loading amount and alkoxy group numbers of a silane coupling agent containing mercapto groups. Inc.J Appl. Polym. Sci. 113, 1507–1514 (2009)

    Article  CAS  Google Scholar 

  71. Suzuki, N., Ito, M., Yatsuyanagi, F.: Effects of rubber/filler interactions on deformation behavior of silica filled SBR systems. Polymer 193–201 (2005)

    Google Scholar 

  72. Wang, J., Wu, W., Wang, W., Zhang, J.: Effect of a coupling agent on the properties of Hemp-Hurd-Powder-Filled styrene-butadiene rubber. Inc. J. Appl. Polym. Sci. 121, 681–689 (2011)

    Article  CAS  Google Scholar 

  73. Park, S.J., Cho, K.S.: Filler-elastomer interactions: influence of silane coupling agent on crosslink density and thermal stability of silica/rubber composites. J. Colloid Interface Sci. 267, 86–91 (2003)

    Article  CAS  Google Scholar 

  74. Idrus, S.S., Ismail, H., Palaniandy, S.: Study of the effect of different shapes of ultrafine silica as fillers in natural rubber compounds. Polym. Testing 30, 251–259 (2011)

    Article  CAS  Google Scholar 

  75. Leblanc, J.L.: Rubber-filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 27, 627–687 (2002)

    Article  CAS  Google Scholar 

  76. Montes, S., White, J.L., Nakajima, N.: Rheological behavior of rubber carbon black compounds in various shear histories. J. Non-Newtonian Fluid Mech. 28, 183–212 (1988)

    Google Scholar 

  77. Medalia, A.I., Kraus, G.: Reinforcement of elastomers by particulate fillers. In: Mark, J.E., Erman, B., Eirich, F.R. (eds.) Science and Technology of Rubber, 2nd edn, pp. 387–418 (Chap. 8). Academic, New York (1994)

    Google Scholar 

  78. Saad, I.S., Fayed, M.Sh., Abdel-Bary, E.M.: Effects of carbon black content on cure characteristics, mechanical properties and swelling behaviour of 80/20 NBR/CIIR blend. In: 13th International Conference on Aerospace Sciences and Aviation Technology, Paper: ASAT-13-CA-06 (2009)

    Google Scholar 

  79. Kemaloglu, S., Ozkoc, G., Aytac, A.: Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim. Acta 499, 40–47 (2010)

    Article  CAS  Google Scholar 

  80. Medalia, A.I.: Electrical conduction in carbon black composites. Rubber Chem. Technol. 59, 432–454 (1986)

    Article  CAS  Google Scholar 

  81. El-Wakil, A.A., Abd El-Megeed, A.A.: Effect of calcium carbonate, silitin N85 and carbon black fillers on the mechanical and electrical properties of the EPDM. ARPN J. Eng. Appl. Sci. 6, 24–29 (2011)

    Google Scholar 

  82. Wagner, M.P: Reinforcing silicas and silicates. Rubber Chem. Technol. 49, 704 (1976)

    Google Scholar 

  83. Butler, J., Freakley, P.K.: Effect of humidity and water content on the cure behavior of a natural-rubber accelerated sulfur compound. Rubber Chem. Technol. 65, 374 (1991)

    Google Scholar 

  84. Ismail, H., Shaari, S.M., Othman, N.: The effect of chitosan loading on the curing characteristics, mechanical and morphological properties of chitosan-filled natural rubber (NR), epoxidised natural rubber (ENR) and styrene-butadiene rubber (SBR) compounds. Polym. Testing 30, 784–790 (2011)

    Article  CAS  Google Scholar 

  85. Zhang, Y., Liu, Q., Zhang, Q., Lu, Y.: Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl. Clay Sci. 50, 255–259 (2010)

    Article  CAS  Google Scholar 

  86. Sadhu, S., Bhowmick, A.K.: Effects of chain length of amine and nature loading of clay on Styrene-Butadiene Rubber-clay nanocomposites. Rubber Chem. Technol. 76, 860 (2003)

    Google Scholar 

  87. Sadhu, S., Bhowmick, A.K.: Preparation and properties of styrene-butadiene rubber based nanocomposites: The influence of the structural and processing parameters. J. Appl. Polym. Sci. 92, 698 (2004)

    Google Scholar 

  88. Kojima, Y., Fukumori, K., Usuki, A., Okada, A., Kurauchi, T.: Gas permeabilities in rubber-clay hybrid. J. Mater. Sci. Lett. 12, 889 (1993)

    Google Scholar 

  89. Vu, Y.T., Mark, J.E., Pham, L.Y.H., Engelhardt, M.: Clay nanolayer reinforcement of cis-1,4-polyisoprene and epoxidized natural rubber. J. Appl. Polym. Sci. 82, 1391–1403 (2001)

    Article  CAS  Google Scholar 

  90. Sengupta, R., Chakraborty, S., Bandyopadhyay, S., Dasgupta, S., Mukhopadhyay, R., Auddy, K., Deuri, A.S.: A short review on rubber/clay nanocomposites with emphasis on mechanical properties. Polym. Eng. Sci. 47, 1956–1974 (2007)

    Article  CAS  Google Scholar 

  91. Joly, S., Garnaud, G., Ollitrault, R., Bokobza, L.: Organically modified layered silicates as reinforcing fillers for natural rubbers. Chem. Mater.,14, 4202 (2002)

    Google Scholar 

  92. Magaraphan, R., Thaijaroen, W., Lim-Ochakun, R,: Structure and properties of natural rubber and modified montmorillonite nanocomposites. Rubber Chem. Technol. 76, 406 (2003)

    Google Scholar 

  93. Lim, S.K., Kim, J.W., Chin, I.J., Choi, H.J.: Rheological properties of a new rubbery nanocomposite: Polyepichlorohydrin/organoclay nanocomposites. J. Appl. Polym. Sci. 86, 3735 (2002)

    Google Scholar 

  94. Wang, Y., Zhang, L., Tang, C., Yu, D.: Preparation and characterization of rubber-clay nanocomposits. J. Appl. Polym. Sci. 78, 1879 (2000)

    Google Scholar 

  95. Wang, Y., Zhang, H., Wu, Y., Yang, J., Zhang, L.: Preparation, structure, and properties of a novel rectorite/styrene-butadiene copolymer nanocomposite. J. Appl. Polym. Sci. 96, 324 (2005)

    Google Scholar 

  96. Vaia, R.A., Ishii, H., Giannelis, E.P.: Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694 (1993)

    Google Scholar 

  97. Arroyo, M., Lopez-Manchado, M.A., Herrero, B.: Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44, 2447 (2003)

    Google Scholar 

  98. Teh, P.L., Mohd-Isak, Z.A., Hashim, A.S., Karger-Kocsis, J., Ishiaku, U.S.: On the potential of organoclay with respect to conventional fillers (carbon black, silica) for epoxidized natural rubber compatibilized natural rubber vulcanizates. J. Appl. Polym. Sci. 94, 2438 (2004)

    Google Scholar 

  99. Tian, M., Qu, C., Feng, Y., Zhang, L.: Structure and properties of fibrillar silicate/SBR composites by direct blend process. J. Mater. Sci. 38, 4917 (2003)

    Google Scholar 

  100. Usuki, A., Tukigase, A., Kato, M.: Preparation and properties of EPDM-clay hybrids. Polymer 43, 2185 (2002)

    Google Scholar 

  101. Gatos, K.G., Thomann, R., Karger-Kocsis, J.: Characteristics of ethylene propylene diene monomer rubber/organoclay nanocomposites resulting from different processing conditions and formulations. Polym. Int. 53, 1191 (2004)

    Google Scholar 

  102. Treacy, M., Ebbesen, T.W., Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678, 1, (1996)

    Google Scholar 

  103. Ijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991)

    Article  Google Scholar 

  104. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes, pp. 1–4. Imperial College Press, London (1999)

    Google Scholar 

  105. Nazlia, G., Fakhru’l-Razi, A., Suraya, A.R., Muataz, A.A.: Multi-walled carbonnanotubes/styrene butadiene rubber (SBR) nanocomposite. J. Fullerenes, Nanotubes, Carbon Nanostruct. 15(3), 207–214 (2007)

    Google Scholar 

  106. Muataz, A.A., Nazif, N., Faridah, Y., Mohammed, F., Chantara, T.R., Mamdouh, A., Faraj, A.A., Khalid, M., Adnan, M.AL-A.: Radiation vulcanization of natural rubber latex loaded with carbon nanotubes. J. Fullerenes, Nanotubes, Carbon Nanostruct. 18, 61–75 (2010)

    Google Scholar 

  107. Kannan, B., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)

    Article  Google Scholar 

  108. Atieh, M.A.: Effects of functionalized carbon nanotubes with carboxylic functional group on the mechanical and thermal properties of styrene butadiene rubber. J. Fullerenes, Nanotubes, Carbon Nanostruct. 19, 617–627 (2011)

    Google Scholar 

  109. Subramaniam, K., Das, A., Heinrich, G.: Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes. Compos. Sci. Technol. 71, 1441–4149 (2011)

    Article  CAS  Google Scholar 

  110. Aso, O., Eguiazabal, J.I., Nazabal, J.: The influence of surface modification on the structure and properties of a nanosilica filled thermoplastic elastomer. Compos. Sci. Technol. 67(13), 2854–2863 (2007)

    Article  CAS  Google Scholar 

  111. Peng, Z., Kong, L.X., Li, S.D., Chen, Y., Huang, M.F.: Compos. Sci. Technol. 67, 3130–3139 (2007)

    Google Scholar 

  112. Marosi, G., Marton, A., Szep, A., Csontos, I., Keszei, S., Zimonyi, E., et al.: Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polym. Degrad. Stabil. 82, 379–385 (2003)

    Article  CAS  Google Scholar 

  113. Likozar, B., Major, Z.: Morphology, mechanical, cross-linking, thermal and tribological properties of nitrile and hydrogenated nitrile rubber/multi-walled carbon nanotubes composites prepared by melt compounding: The effect of acrylonitrile content and hydrogenation. Appl. Surf. Sci. 257, 565–573 (2010)

    Google Scholar 

  114. Chen, S., Yu, H., Ren, W., Zhang, Y.,: Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim. Acta 491, 103–108 (2009)

    Google Scholar 

  115. Brasa, J., Hassan, M.L., Bruzessea, C., Hassan, E.A., El-Wakil, N.A., Dufresne, A.: Mechanical,barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod. 32, 627–633 (2010)

    Google Scholar 

  116. Arroyo, M., Lopez-Manchado, M.A., Valentin, J.L., Carretero, J.: Morphology/behavior relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Compos. Sci. Technol. 67, 1330–1339 (2007)

    Google Scholar 

  117. Gibala, D., Laohapisitpanich, K., Thomas, D., Hamed, G.R.: Cure and mechanical behaviour of rubber compounds containing ground vulcanizates. 2. Mooney viscosity. Rubber Chem. Technol. 69(1), 115–119 (1996)

    Article  CAS  Google Scholar 

  118. Choi, S.S., Nah, C., Lee, S.G., Joo, C.W.: Effect of filler–filler interaction on rheological behaviour of natural rubber compounds filled with both carbon black and silica. Polym. Int. 52(1), 23–28 (2003)

    Article  CAS  Google Scholar 

  119. Sadhu, U., Bhowmick, A.K.: Unique rheological behavior of rubber based nanocomposites. J. Polym. Sci. B: Polym. Phys. 43, 1854–1864 (2005)

    Google Scholar 

  120. Takahashi, S., Goldberg, H.A., Feeney, C.A., Karim, D.P., Farrell, M., O’Leary, K., Paul, D.R.: Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer 47, 3083–3093 (2006)

    Google Scholar 

  121. Wang, M., Kutsovsky, Y., Reznek, S.R., Mahmud, K.: Elastomeric compounds with improved wet skid resistance and methods to improve wet skid resistance. US Patent 6469089, Cabot Corp

    Google Scholar 

  122. http://www.azonano.com/article.aspx?ArticleID=1351

  123. Rogers, B., Webb, R., Wang, W.: Nanocomposite technology in tire inner liners. ACS Central Region al Meeting, Frankenmuth, Mich., 16–20 May, paper no. 140

    Google Scholar 

  124. Feeney, C.A., Goldberg, H.A., Farrell, M., et al.: Barrier coating of a non-butyl elastomer and a dispersed layered filler in a liquid carrier and coated articles. US Patent 10741251, to InMat Inc

    Google Scholar 

  125. Chakravarty, S.N., Chakravarty, A.: Reinforcement of rubber compounds with Nanofiller. KGK-Kautschuk Gummi Kunststoffe 11, 619–622 (2007)

    Google Scholar 

  126. Sullivan, M.J., Ladd, D.A.: Golf ball containing graphite nanosheets in a polymeric network. US Patent 715756, issued on 11 April, to Acushnet Co

    Google Scholar 

  127. http://www.guardee.com/en/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guralp Ozkoc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kodal, M., Ozkoc, G. (2013). Micro and Nanofillers in Rubbers. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_11

Download citation

Publish with us

Policies and ethics