Skip to main content

Tetracysteine and Bipartite Tags for Biarsenical Organic Fluorophores

  • Chapter
  • First Online:
Advanced Fluorescence Reporters in Chemistry and Biology III

Part of the book series: Springer Series on Fluorescence ((SS FLUOR,volume 113))

Abstract

Genetically encoded fluorescent tags enabling the direct determination of biomolecular functions, interactions and dynamics in living cells and organisms, have had a tremendous impact on cell biology. Key among them are the fluorescent proteins, which despite their great utility present a number of shortcomings. Thus, there has been a very active development of alternative approaches for chemically labeling proteins in live cells, with special interest in small probe molecules. This review depicts a comprehensive review of one of the most remarkable examples of such approaches for intracellular targeting, namely biarsenical ligands that selectively bind to tetracysteine motifs and bipartite dicysteine motifs incorporated into protein targets. The state-of-the-art with respect to small biarsenical molecules and peptide tags are presented, with consideration of their binding properties, labeling aspects, photophysical properties, and applications. The latter include purification of proteins, localization, trafficking and conformational changes of proteins, pulse-chase labeling, chromophore or fluorophore-assisted light inactivation (CALI or FALI), correlated fluorescence and electron microscopy (CLEM), and FRET-based investigations. The development and applications of bimolecular tetracysteine tags is a recent, promising extension of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin BR, Giepmans BN, Adams SR, Tsien RY (2005) Mammalian cell-based optimization of the biarsenical-binding tetracysteine motif for improved fluorescence and affinity. Nat Biotechnol 23:1308–1314

    Article  CAS  Google Scholar 

  2. Griffin BA, Adams SR, Tsien RY (1998) Specific covalent labeling of recombinant protein molecules inside live cells. Science 281:269–272

    Article  CAS  Google Scholar 

  3. Adams SR, Campbell RE, Gross LA, Martin BR, Walkup GK, Yao Y, Llopis J, Tsien RY (2002) New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc 124:6063–6076

    Article  CAS  Google Scholar 

  4. Adams SR (2007) The biarsenical-tetracysteine protein tag: chemistry and biological applications. In: Schreiber SL, Kapoor TM, Weiss G (eds) From small molecules to system biology and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  5. Wang T, Yan P, Squier TC, Mayer MU (2007) Prospecting the proteome: identification of naturally occurring binding motifs for biarsenical probes. Chembiochem 8:1937–1940

    Article  CAS  Google Scholar 

  6. Spagnuolo CC, Vermeij RJ, Jares-Erijman EA (2006) Improved photostable FRET-competent biarsenical-tetracysteine probes based on fluorinated fluoresceins. J Am Chem Soc 128:12040–12041

    Article  CAS  Google Scholar 

  7. Cao H, Chen B, Squier TC, Mayer MU (2006) CrAsH: a biarsenical multi-use affinity probe with low non-specific fluorescence. Chem Commun 2601–2603

    Google Scholar 

  8. Bhunia AK, Miller SC (2007) Labeling tetracysteine-tagged proteins with a SplAsH of color: a modular approach to bis-arsenical fluorophores. Chembiochem 8:1642–1645

    Article  CAS  Google Scholar 

  9. Madani F, Lind J, Damberg P, Adams SR, Tsien RY, Gräslund AO (2009) Hairpin structure of a biarsenical-tetracysteine motif determined by NMR spectroscopy. J Am Chem Soc 131:4613–4615

    Article  CAS  Google Scholar 

  10. Chen B, Cao H, Yan P, Mayer MU, Squier TC (2007) Identification of an orthogonal peptide binding motif for biarsenical multiuse affinity probes. Bioconjug Chem 18:1259–1265

    Article  CAS  Google Scholar 

  11. Cao H, Xiong Y, Wang T, Chen B, Squier TC, Mayer MU (2007) A red cy3-based biarsenical fluorescent probe targeted to a complementary binding peptide. J Am Chem Soc 129:8672–8673

    Article  CAS  Google Scholar 

  12. Zürn A, Klenk C, Zabel U, Reiner S, Lohse MJ, Hoffmann C (2010) Site-specific, orthogonal labeling of proteins in intact cells with two small biarsenical fluorophores. Bioconjug Chem 21:853–859

    Article  Google Scholar 

  13. Getz EB, Xiao M, Chakrabarty T, Cooke R, Selvin PR (1999) A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal Biochem 273:73–80

    Article  CAS  Google Scholar 

  14. Soh N (2008) Selective chemical labeling of proteins with small fluorescent molecules based on metal-chelation methodology. Sensors 8:1004–1024

    Article  CAS  Google Scholar 

  15. Adams SR, Tsien RY (2008) Preparation of the membrane-permeant biarsenicals FlAsH-EDT2 and ReAsH-EDT2 for fluorescent labeling of tetracysteine-tagged proteins. Nat Protocols 3:1527–1534

    Article  CAS  Google Scholar 

  16. Gaietta G, Deerinck TJ, Adams SR, Bouwer J, Tour O, Laird DW, Sosinsky GE, Tsien RY, Ellisman MH (2002) Multicolor and electron microscopic imaging of connexin trafficking. Science 296:503–507

    Article  CAS  Google Scholar 

  17. Park H, Hanson GT, Duff SR, Selvin PR (2004) Nanometre localization of single ReAsH molecules. J Microsc 216:199–205

    Article  CAS  Google Scholar 

  18. Taguchi Y, Shi ZD, Ruddy B, Dorward DW, Greene L, Baron GS (2009) Specific biarsenical labeling of cell surface proteins allows fluorescent- and biotin-tagging of amyloid precursor protein and prion proteins. Mol Biol Cell 20:233–244

    Article  CAS  Google Scholar 

  19. Nakanishi J, Nakajima T, Sato M, Ozawa T, Tohda K, Umezawa Y (2001) Imaging of conformational changes of proteins with a new environment-sensitive fluorescent probe designed for site-specific labeling of recombinant proteins in live cells. Anal Chem 73:2920–2928

    Article  CAS  Google Scholar 

  20. Nakanishi J, Maeda M, Umezawa Y (2004) A new protein conformation indicator based on biarsenical fluorescein with an extended benzoic acid moiety. Anal Sci 20:273–278

    Article  CAS  Google Scholar 

  21. Urano Y, Kamiya M, Kanda K, Ueno T, Hirose K, Nagano T (2005) Evolution of fluorescein as a platform for finely tunable fluorescence probes. J Am Chem Soc 127:4888–4894

    Article  CAS  Google Scholar 

  22. Tour O, Adams SR, Kerr RA, Meijer RM, Sejnowski TJ, Tsien RW, Tsien RY (2007) Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat Chem Biol 3:423–431

    Article  CAS  Google Scholar 

  23. Liu B, Archer CT, Burdine L, Gillette TG, Kodadek T (2007) Label transfer chemistry for the characterization of protein-protein interactions. J Am Chem Soc 129:12348–12349

    Article  CAS  Google Scholar 

  24. Thorn KS, Naber N, Matuska M, Vale RD, Cooke R (2000) A novel method of affinity-purifying proteins using a bis-arsenical fluorescein. Protein Sci 9:213–217

    Article  CAS  Google Scholar 

  25. Feldman G, Bogoev R, Shevirov J, Sartiel A, Margalit I (2004) Detection of tetracysteine-tagged proteins using a biarsenical fluorescein derivative through dry microplate array gel electrophoresis. Electrophoresis 25:2447–2451

    Article  CAS  Google Scholar 

  26. Sciara MI, Spagnuolo CC, Jares-Erijman EA, Garcia Véscovi E (2008) Cytolocalization of the PhoP response regulator in Salmonella enterica: modulation by extracellular Mg2 + and by the SCV environment. Mol Microbiol 70:479–493

    Article  Google Scholar 

  27. Senf F, Tommassen J, Koster M (2008) Polar secretion of proteins via the Xcp type II secretion system in Pseudomonas aeruginosa. Microbiology 154:3025–3032

    Article  CAS  Google Scholar 

  28. Panchal RG, Ruthel G, Kenny TA, Kallstrom GH, Lane D, Badie SS, Li L, Bavari S, Aman MJ (2003) In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding. Proc Natl Acad Sci USA 100:15936–15941

    Article  CAS  Google Scholar 

  29. Ignatova Z, Gierasch LM (2004) Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proc Natl Acad Sci USA 101:523–528

    Article  CAS  Google Scholar 

  30. Muñoz-Pinedo C, Guío-Carrión A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578

    Article  Google Scholar 

  31. Ju W, Morishita W, Tsui J, Gaietta G, Deerinck TJ, Adams SR, Garner CC, Tsien RY, Ellisman MH, Malenka RC (2004) Activity-dependent regulation of dendritic synthesis and trafficking of AMPA receptors. Nat Neurosci 7:244–253

    Article  CAS  Google Scholar 

  32. Marek KW, Davis GW (2002) Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I. Neuron 36:805–813

    Article  CAS  Google Scholar 

  33. Heerssen H, Fetter R, Davis G (2008) Clathrin dependence of synaptic vesicle formation at the Drosophila neuromuscular junction. Curr Biol 18:401–409

    Article  CAS  Google Scholar 

  34. Kasprowicz J, Kuenen S, Miskiewicz K, Habets RL, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake J. Cell Biol 182:1007–1016

    Article  CAS  Google Scholar 

  35. Venken KJ, Kasprowicz J, Kuenen S, Yan J, Hassan BA, Verstreken P (2008) Recombineering-mediated tagging of Drosophila genomic constructs for in vivo localization and acute protein inactivation. Nucleic Acids Res 36:e114

    Article  Google Scholar 

  36. Gaietta GM, Giepmans BN, Deerinck TJ, Smith WB, Ngan L, Llopis J, Adams SR, Tsien RY, Ellisman MH (2006) Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci USA 103:17777–17782

    Article  CAS  Google Scholar 

  37. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    Article  CAS  Google Scholar 

  38. Domingo B, Sabariegos R, Picazo F, Llopis J (2007) Imaging FRET standards by steady-state fluorescence and lifetime methods. Microsc Res Tech 1021:1010–1021

    Article  Google Scholar 

  39. Hoffmann C, Gaietta G, Bünemann M, Adams SR, Oberdorff-Maass S, Behr B, Vilardaga JP, Tsien RY, Ellisman MH, Lohse MJ (2005) A FlAsH-based FRET approach to determine G protein coupled receptor activation in living cells. Nat Methods 2:171–176

    Article  CAS  Google Scholar 

  40. Evans NJ, Walker JW (2008) Endothelin receptor dimers evaluated by FRET, ligand binding, and calcium mobilization. Biophys J 95:483–492

    Article  CAS  Google Scholar 

  41. Liu R, Hu D, Tan X, Lu HP (2006) Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy. J Am Chem Soc 128:10034–10042

    Article  CAS  Google Scholar 

  42. Granier S, Kim S, Shafer AM, Ratnala VR, Fung JJ, Zare RN, Kobilka B (2007) Structure and conformational changes in the C-terminal domain of the beta2-adrenoceptor: insights from fluorescence resonance energy transfer studies. J Biol Chem 282:13895–13905

    Article  CAS  Google Scholar 

  43. Robia SL, Flohr NC, Thomas DD (2005) Phospholamban pentamer quaternary conformation determined by in-gel fluorescence anisotropy. Biochemistry 44:4302–4311

    Article  CAS  Google Scholar 

  44. Roberti MJ, Bertoncini CW, Klement R, Jares-Erijman EA, Jovin TM (2007) Fluorescence imaging of amyloid formation in living cells by a functional, tetracysteine-tagged alpha-synuclein. Nat Methods 4:345–351

    CAS  Google Scholar 

  45. Kerppola T (2006) Visualization of molecular interactions by fluorescence complementation. Nat Rev 7:449–456

    Article  CAS  Google Scholar 

  46. Hu C, Kerppola T (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol 21:539–545

    Article  CAS  Google Scholar 

  47. Luedtke NW, Dexter RJ, Fried DB, Schepartz A (2007) Surveying polypeptide and protein domain conformation and association with FlAsH and ReAsH. Nat Chem Biol 3:779–784

    Article  CAS  Google Scholar 

  48. Krishnan B, Gierasch L (2008) Cross-strand split tetra-Cys motifs as structure sensors in a β-sheet protein. Chem Biol 20:1104–1115

    Article  Google Scholar 

  49. Goodman J, Fried D, Schepartz A (2009) Bipartite tetracysteine display requires site flexibility for ReAsH coordination. Chembiochem 10:1644–1647

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Jares-Erijman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spagnuolo, C., Joselevich, M., Leskow, F.C., Jares-Erijman, E.A. (2011). Tetracysteine and Bipartite Tags for Biarsenical Organic Fluorophores. In: Demchenko, A. (eds) Advanced Fluorescence Reporters in Chemistry and Biology III. Springer Series on Fluorescence, vol 113. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18035-4_8

Download citation

Publish with us

Policies and ethics