Skip to main content

Introduction and Background Information

  • Chapter
  • First Online:
Biotransformations in Organic Chemistry

Abstract

>Any exponents of classical organic chemistry might probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due to the fact, that biological systems would have to be handled. Where the growth and maintenance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations, close collaboration with a microbiologist or a biochemist is highly recommended to set up and use fermentation systems [1, 2]. On the other hand, isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The majority of commonly used enzyme preparations are available through chemical suppliers. Nevertheless, for economic reasons, it may be worth contacting an enzyme producer directly, in particular if bulk quantities are required. For a list of enzyme suppliers see the appendix (Chap. 5).

  2. 2.

    After all, the exact structure of a Grignard-reagent is still unknown.

  3. 3.

    Other sectors of biotechnology have been defined as ‘Red’ (biotechnology in medicine), ‘Green’ (biotechnology for agriculture and plant biotech) and ‘Blue’ (marine biotechnology), http://www.EuropaBio.org, http://www.bio.org

  4. 4.

    Only proteases are exceptions to this rule for obvious reasons.

  5. 5.

    For exceptional D-chiral proteins see [61].

  6. 6.

    According to a BBC-report, the sale of rac-thalidomide to third-world countries has been resumed in mid-1996!

  7. 7.

    For a convenient method for controlling the substrate concentration see [85].

  8. 8.

    E. coli has ~4,500 genes and Saccharomyces cerevisiae (baker's yeast) ~6,500 genes.

  9. 9.

    The amino acid sequence of a protein is generally referred to as its ‘primary structure’, whereas the three-dimensional arrangement of the polyamide chain (the ‘backbone’) in space is called the ‘secondary structure’. The ‘tertiary structure’ includes the arrangement of all atoms, i.e., the amino acid side chains are included, whereas the ‘quarternary structure’ describes the aggregation of several protein molecules to form oligomers.

  10. 10.

    Water bound to an enzyme's surface exhibits a (formal) freezing point of about –20°C.

  11. 11.

    PDB entry 3icw, courtesy of U. Wagner.

  12. 12.

    Also called London forces.

  13. 13.

    Also called Coulomb interactions.

  14. 14.

    ‘To use a picture I want to say that enzyme and glucoside must go together like key and lock in order to exert a chemical effect upon each other’, see [94] p. 2992.

  15. 15.

    ‘A precise orientation of catalytic groups is required for enzyme action; the substrate may cause an appreciable change in the three-dimensional relationship of the amino acids at the active site, and the changes in protein structure caused by a substrate will bring the catalytic groups into proper orientation for reaction, whereas a non-substrate will not.’ See [96].

  16. 16.

    Conformational changes are differentiated into hinge- and shear-type movements [98].

  17. 17.

    A ‘record’ of rate acceleration factor of 1014 has been reported. See [100].

  18. 18.

    This phenomenon is denoted as ‘electrostatic catalysis’ and was coined as ‘Circe-effect’ by WP Jencks.

  19. 19.

    By average, enzymes are 100 times bigger than related chemical catalysts.

  20. 20.

    It is important to note that the (modest) pKa of typical amino acid side chains, such as –NH3 + or –CO2– can be substantially altered up to 2–3 pKa-units through neighboring groups within the enzyme environment. As a consequence, the (approximately neutral) imidazole moiety of His can act as strong acid or base, depending on its molecular environment.

  21. 21.

    The following rationale was adapted from [111].

  22. 22.

    The individual reaction rates v A and v B correspond to v A = (k cat/K M)A · [Enz] · [A] and v B = (k cat/K M)B · [Enz] · [B], respectively, according to Michaelis-Menten kinetics. The ratio of the individual reaction rates of enantiomers is an important parameter for the description of the enantioselectivity of a reaction: v A/v B = E (‘Enantiomeric Ratio’, see Sect. 2.1.1).

  23. 23.

    Based on the biotransformation database of Kroutil and Faber (2010) ~14,000 entries.

  24. 24.

    For a discussion of the pitfalls associated with TONs and TOFs see [124].

  25. 25.

    Assuming that each catalyst molecule has a single active site. For enzymes obeying Michaelis-Menten kinetics the TON is equal to 1/k cat.

  26. 26.

    A ‘cofactor’ is tightly bound to an enzyme (e.g., FAD), whereas a ‘coenzyme’ can dissociate into the medium (e.g., NADH). In practice, however, this distinction is not always made in a consequent manner.

References

  1. Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9

    CAS  Google Scholar 

  2. Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms. Cambridge University Press, Cambridge

    Google Scholar 

  3. Baross JA, Deming JW (1983) Nature 303: 423

    CAS  Google Scholar 

  4. Hough DW, Danson MJ (1999) Curr. Opinion Chem. Biol. 3: 39

    CAS  Google Scholar 

  5. Prieur D (1997) Trends Biotechnol. 15: 242

    CAS  Google Scholar 

  6. Feyerabend P (1988) Against Method. Verso, London

    Google Scholar 

  7. Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81

    CAS  Google Scholar 

  8. Carrea G, Ottolina G, Riva S (1995) Trends Biotechnol. 13: 63

    CAS  Google Scholar 

  9. Bell G, Halling PJ, Moore BD, Partridge J, Rees DG (1995) Trends Biotechnol. 13: 468

    CAS  Google Scholar 

  10. Koskinen AMP, Klibanov AM (eds) (1996) Enzymatic Reactions in Organic Media. Blackie Academic & Professional, London

    Google Scholar 

  11. Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol. 52, pp 87–128, Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Wolfenden R, Snider MJ (2001) Acc. Chem. Res. 34: 938

    CAS  Google Scholar 

  13. Menger FM (1993) Acc. Chem. Res. 26: 206

    CAS  Google Scholar 

  14. Zechel DL, Withers SG (2000) Acc. Chem. Res. 33: 11

    CAS  Google Scholar 

  15. Garcia-Junceda E (2008) Multi-step Enzyme Catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  16. Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298

    CAS  Google Scholar 

  17. Boland W, Frößl C, Lorenz M (1991) Synthesis 1049

    Google Scholar 

  18. Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology. Verlag Chemie, Weinheim, vol 6a, pp 387–419

    Google Scholar 

  19. Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037

    CAS  Google Scholar 

  20. Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc., Chem. Commun. 1120

    Google Scholar 

  21. Zhang D, Poulter CD (1993) J. Am. Chem. Soc. 115: 1270

    CAS  Google Scholar 

  22. Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087

    CAS  Google Scholar 

  23. Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256

    CAS  Google Scholar 

  24. Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153

    CAS  Google Scholar 

  25. Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes. Wiley, New York

    Google Scholar 

  26. Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527

    CAS  Google Scholar 

  27. Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9

    CAS  Google Scholar 

  28. May SW (1979) Enzyme Microb. Technol. 1: 15

    CAS  Google Scholar 

  29. Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113: 667

    Google Scholar 

  30. Walsh CT, Chen YCJ (1988) Angew. Chem., Int. Ed. 27: 333

    Google Scholar 

  31. Servi S (1990) Synthesis 1

    Google Scholar 

  32. Koszelewski D, Lavandera I, Clay D, Guebitz G, Rozzell D, Kroutil W (2010) Angew. Chem., Int. Ed. 47: 9337

    Google Scholar 

  33. Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838

    CAS  Google Scholar 

  34. Akhtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899

    CAS  Google Scholar 

  35. Effenberger F, Ziegler T (1987) Angew. Chem., Int. Ed. 26: 458

    Google Scholar 

  36. Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications. Ellis Horwood, Chichester

    Google Scholar 

  37. Stecher H, Twengg M, Ueberbacher BJ, Remler P, Schwab H, Griengl H, Gruber-Khadjawi M (2009) Angew. Chem., Int. Ed. 48: 9546

    CAS  Google Scholar 

  38. Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457

    CAS  Google Scholar 

  39. Aresta M, Quaranta E, Liberio R, Dileo C, Tommasi I (1998) Tetrahedron 54: 8841

    CAS  Google Scholar 

  40. Ohta H (1999) Adv. Biochem. Eng. Biotechnol. 63: 1

    CAS  Google Scholar 

  41. Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203

    CAS  Google Scholar 

  42. Fuganti C, Grasselli P (1988) Baker's Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, vol 389, pp 359–370

    Google Scholar 

  43. Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365

    CAS  Google Scholar 

  44. Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc., Chem. Commun. 1331

    Google Scholar 

  45. Pohl M, Lingen B, Müller M (2002) Chem. Eur. J. 8: 5288

    CAS  Google Scholar 

  46. Durchschein K, Ferreira-da Silva B, Wallner S, Macheroux P, Kroutil W, Glueck SM, Faber K (2010) Green Chem. 12: 616

    CAS  Google Scholar 

  47. Williams RM (2002) Chem. Pharm. Bull. 50: 711

    CAS  Google Scholar 

  48. Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc., Chem. Commun. 1321

    Google Scholar 

  49. Pohnert G (2001) ChemBioChem 2: 873

    CAS  Google Scholar 

  50. Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189

    CAS  Google Scholar 

  51. Ganem B (1996) Angew. Chem., Int. Ed. 35: 936

    Google Scholar 

  52. Bornscheuer UT, Kazlauskas RJ (2004) Angew. Chem., Int. Ed. 43: 6032

    CAS  Google Scholar 

  53. Hult K, Berglund P (2007) Trends Biotechnol. 25: 231

    CAS  Google Scholar 

  54. Walsh C (2001) Nature 409: 226

    CAS  Google Scholar 

  55. Khersonsky O, Roodveldt C, Tawfik DS (2006) Curr. Opinion Chem. Biol. 10: 498

    CAS  Google Scholar 

  56. O'Brien PJ, Herschlag D (1999) Chem. Biol. 6: R91

    Google Scholar 

  57. Kazlauskas RJ (2005) Curr. Opinion Chem. Biol. 9: 195

    CAS  Google Scholar 

  58. Penning TM, Jez JM (2001) Chem. Rev. 101: 3027

    CAS  Google Scholar 

  59. Sweers HM, Wong CH (1986) J. Am. Chem. Soc. 108: 6421

    CAS  Google Scholar 

  60. Bashir NB, Phythian SJ, Reason AJ, Roberts SM (1995) J. Chem. Soc., Perkin Trans. 1, 2203

    Google Scholar 

  61. Jung G (1992) Angew. Chem., Int. Ed. 31: 1457

    Google Scholar 

  62. Sih CJ, Wu SH (1989) Topics Stereochem. 19: 63

    CAS  Google Scholar 

  63. Fischer E (1898) Zeitschr. physiol. Chem. 26: 60

    CAS  Google Scholar 

  64. Crossley R (1992) Tetrahedron 48: 8155

    CAS  Google Scholar 

  65. De Camp WH (1989) Chirality 1: 2

    CAS  Google Scholar 

  66. Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides. Elsevier, Amsterdam, pp 39–108

    Google Scholar 

  67. Crosby J (1997) Introduction. In: Collins AN, Sheldrake GN, Crosby J (eds) Chirality in Industry II, pp 1–10, Wiley, Chichester

    Google Scholar 

  68. Millership JS, Fitzpatrick A (1993) Chirality 5: 573

    CAS  Google Scholar 

  69. Borman S (1992) Chem. Eng. News, June 15: 5

    Google Scholar 

  70. FDA (1992) Chirality 4: 338

    Google Scholar 

  71. US Food & Drug Administration (2004) Pharmaceutical Current Good Manufacturing Practices (cGMPs) for the 21st Century – a Risk-Based Approach: Final Report

    Google Scholar 

  72. Farina V, Reeves JT, Senanayake CH, Song JJ (2006) Chem. Rev. 106: 2734

    CAS  Google Scholar 

  73. Agranat H, Caner H, Caldwell J (2002) Nat. Rev. Drug Discov. 1: 753

    CAS  Google Scholar 

  74. Sheldon RA (1993) Chirotechnology. Marcel Dekker, New York

    Google Scholar 

  75. Collins AN, Sheldrake GN, Crosby J (eds) (1992, 1997) Chirality in Industry, 2 vols. Wiley, Chichester

    Google Scholar 

  76. Morrison JD (ed) (1985) Chiral catalysis. In: Asymmetric Synthesis, vol 5. Academic Press, London

    Google Scholar 

  77. Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach. Pergamon Press, Oxford

    Google Scholar 

  78. Scott JW (1984) Readily available chiral carbon fragments and their use in synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis. Academic Press, New York, vol 4, pp 1-226

    Google Scholar 

  79. Margolin AL (1993) Enzyme Microb. Technol. 15: 266

    CAS  Google Scholar 

  80. Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas R (2008) Angew. Chem. Int. Ed. 47: 8782

    CAS  Google Scholar 

  81. Phillips RS (1996) Trends Biotechnol. 14: 13

    CAS  Google Scholar 

  82. Schuster M, Aaviksaar A, Jakubke HD (1990) Tetrahedron 46: 8093

    CAS  Google Scholar 

  83. Yeh Y, Feeney (1996) Chem. Rev. 96: 601

    CAS  Google Scholar 

  84. Klibanov AM (1990) Acc. Chem. Res. 23: 114

    CAS  Google Scholar 

  85. D'Arrigo P, Fuganti C, Pedrocchi-Fantoni G, Servi S (1998) Tetrahedron 54: 15017

    Google Scholar 

  86. Anfinsen CB (1973) Science 181: 223

    CAS  Google Scholar 

  87. Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95

    CAS  Google Scholar 

  88. Ahern TJ, Klibanov AM (1985) Science 228: 1280

    CAS  Google Scholar 

  89. Adams MWW, Kelly RM (1998) Trends Biotechnol. 16: 329

    CAS  Google Scholar 

  90. Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50

    CAS  Google Scholar 

  91. Jencks WP (1969) Catalysis in Chemistry and Enzymology. McGraw-Hill, New York

    Google Scholar 

  92. Fersht A (1985) Enzyme Structure and Mechanism, 2nd edn. Freeman, New York

    Google Scholar 

  93. Walsh C (ed) (1979) Enzymatic Reaction Mechanism. Freeman, San Francisco

    Google Scholar 

  94. Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985

    CAS  Google Scholar 

  95. Lichtenthaler FW (2003) Angew. Chem., Int. Ed. 33: 2364

    Google Scholar 

  96. Koshland DE (1958) Proc. Natl. Acad. Sci. USA 44: 98

    CAS  Google Scholar 

  97. Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359

    CAS  Google Scholar 

  98. Gerstein M, Lesk AM, Chotia C (1994) Biochemistry 33: 6739

    CAS  Google Scholar 

  99. Dewar MJS (1986) Enzyme 36: 8

    CAS  Google Scholar 

  100. Lipscomb WN (1982) Acc. Chem. Res. 15: 232

    CAS  Google Scholar 

  101. Warshel A, Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. USA 86: 5820

    CAS  Google Scholar 

  102. Page M I (1977) Angew. Chem. 89: 456

    CAS  Google Scholar 

  103. Ottosson J, Rotticci-Mulder JC, Rotticci D, Hult K (2001) Protein Sci. 10: 1769

    CAS  Google Scholar 

  104. Lipscomb WN (1982) Acc. Chem. Res. 15: 232

    CAS  Google Scholar 

  105. Ottosson J, Fransson L, Hult K (2002) Protein Sci. 11: 1462

    CAS  Google Scholar 

  106. Johnson LN (1984) Inclusion Compds. 3: 509

    CAS  Google Scholar 

  107. Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Chem. Rev. 106: 3210

    CAS  Google Scholar 

  108. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303: 186

    CAS  Google Scholar 

  109. Masgrau L, Roujeinikova A, Johanissen LO, Hothi P, Basran J, Ranaghan KE, Mulholland AJ, Sutcliffe MJ, Scrutton NS, Leys D (2006) Science 312: 237

    CAS  Google Scholar 

  110. Ogston AG (1948) Nature 162: 963

    CAS  Google Scholar 

  111. Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ, Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part I. Wiley, New York, pp 1–46

    Google Scholar 

  112. Cipiciani A, Fringuelli F, Mancini V, Piermatti O, Scappini AM, Ruzziconi R (1997) Tetrahedron 53: 11853

    CAS  Google Scholar 

  113. Kielbasinski P, Goralczyk P, Mikolajczyk M, Wieczorek MW, Majzner WR (1998) Tetrahedron: Asymmetry 9: 2641

    CAS  Google Scholar 

  114. Eyring H (1935) J. Chem. Phys. 3: 107

    CAS  Google Scholar 

  115. Kraut J (1988) Science 242: 533

    CAS  Google Scholar 

  116. Wong CH (1989) Science 244: 1145

    CAS  Google Scholar 

  117. Wolfenden R (1999) Bioorg. Med. Chem. 7: 647

    CAS  Google Scholar 

  118. International Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature. Academic Press, New York

    Google Scholar 

  119. Schomburg D (ed) (2002) Enzyme Handbook. Springer, Heidelberg

    Google Scholar 

  120. Appel RD, Bairoch A, Hochstrasser DF (1994) Trends Biochem. Sci. 19: 258

    CAS  Google Scholar 

  121. Bairoch A (1999) Nucl. Acids Res. 27: 310; <http://www.expasy.ch/enzyme/>

  122. Kindel S (1981) Technology 1: 62

    Google Scholar 

  123. Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, vol 5. pp 1–114

    Google Scholar 

  124. Farina V (2004) Adv. Synth. Catal. 346: 1553

    CAS  Google Scholar 

  125. Behr A (2007) Angewandte Homogene Katalyse. Wiley-VCH, Weinheim, p 40

    Google Scholar 

  126. Mahler HR, Cordes HE (1971) Biological Chemistry, 2nd ed. Harper & Row, London

    Google Scholar 

  127. Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. 24: 539

    Google Scholar 

  128. Chaplin MF, Bucke C (1990) Enzyme Technology. Cambridge University Press, New York

    Google Scholar 

  129. White JS, White DC (1997) Source Book of Enzymes. CRC Press, Boca Raton

    Google Scholar 

  130. Spradlin JE (1989) Tailoring Enzymes for Food Processing, in: Whitaker JR, Sonnet PE(eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc., Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Faber .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faber, K. (2011). Introduction and Background Information. In: Biotransformations in Organic Chemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17393-6_1

Download citation

Publish with us

Policies and ethics