Skip to main content

Lattice Approach and Implied Trees

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

Lattice methods or tree methods have become standard tools for pricing many types of options, since they are robust and easy to implement. The basic method is built on a binomial tree and assumes constant volatility and constant relative node spacing. The tree grows from the initial spot price, until maturity is reached. There the payoff is evaluated, and a subsequent backward recursion yields the value of the option. The resulting discrete-time approach is consistent with the continuous Black-Scholes model. This basic lattice approach has been extended to cope with a variable local volatility. Here the lattice nodes are determined based on market data of European-style options. In this way an “implied tree” is created matching the volatility smile. This chapter introduces into tree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barle, S., Cakici. N. (1998). How to grow a smiling tree. Journal of Financial Engineering, 7, 127–146.

    Google Scholar 

  • Boyle, P.P., Evnine, J., Gibbs, S. (1989). Numerical evaluation of multivariate contingent claims. Review Financial Studies2, 241–250.

    Google Scholar 

  • Breen, R. (1991). The accelerated binomial option pricing model. Journal of Financial and Quantitative Analysis, 26, 153–164.

    Article  Google Scholar 

  • Broadie, M., Detemple, J. (1996). American option valuation: new bounds, approximations, and a comparison of existing methods. Review Financial Studies, 9, 1211–1250.

    Article  Google Scholar 

  • Coleman, T.F., Li, Y., Verma, Y. (2002). A Newton method for American option pricing. Journal of Computational Finance, 5(3), 51–78.

    Google Scholar 

  • Cox, J.C., Ross, S., Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7, 229–264.

    Article  MATH  Google Scholar 

  • Cox, J.C., Rubinstein, M. (1985). Options Markets. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  • Dai, T.S., Lyuu, Y.D. (2010). The binomial tree: A simple model for efficient and accurate option pricing. to appear: J. Derivatives

    Google Scholar 

  • Derman, E., Kani, I. (1994). Riding on a smile. Risk, 7(2), 32–39.

    Google Scholar 

  • Derman, E., Kani, I., Chriss, N. (1996). Implied trinomial trees of the volatility smile. Journal of Derivatives, 3, 7–22.

    Article  Google Scholar 

  • Dupire, B. (1994). Pricing with a smile. Risk, 7, 18–20.

    Google Scholar 

  • Fengler, M.R. (2005). Semiparametric Modeling of Implied Volatility. Springer, Berlin.

    MATH  Google Scholar 

  • Figlewski, S., Gao, B. (1999). The adaptive mesh model: A new approach to efficient option pricing. Journal of Financial Economics, 53, 313–351.

    Article  Google Scholar 

  • Forsyth, P.A., Vetzal, K.R., Zvan, R. (2002). Convergence of numerical methods for valuing path-dependent options using interpolation. Review of Derivatives Research, 5, 273–314.

    Article  MATH  Google Scholar 

  • Glaser, J., Heider, P. (2010). Arbitrage-free approximation of call price surfaces and input data risk. Quantitative Finance, DOI: 10.1080/14697688.2010.514005

    Google Scholar 

  • Härdle, W., Myšičková, A. (2009). Numerics of implied binomial trees. In: Härdle, W., Hautsch, N., Overbeck, L. (eds.) Applied Quantitative Finance. Springer, Berlin.

    Chapter  Google Scholar 

  • Honoré, P., Poulsen, R. (2002). Option pricing with EXCEL. In: Nielsen, S. (eds.) Programming Languages and Systems in Computational Economics and Finance. Kluwer, Amsterdam.

    Google Scholar 

  • Hull, J., White, A. (1988). The use of the control variate technique in option pricing. Journal of Financial Quantitative Analysis, 23, 237–251.

    Article  Google Scholar 

  • Hull, J.C. (2000). Options, Futures, and Other Derivatives. Fourth Edition. Prentice Hall International Editions, Upper Saddle River.

    Google Scholar 

  • Jackwerth, J.C. (1977). Generalized binomial trees. Journal of Derivatives, 5, 7–17.

    Article  Google Scholar 

  • Klassen, T.R. (2001). Simple, fast and flexible pricing of Asian options. Journal of Computational Finance, 4(3), 89–124.

    Google Scholar 

  • Kwok, Y.K. (1998). Mathematical Models of Financial Derivatives. Springer, Singapore.

    MATH  Google Scholar 

  • Lyuu, Y.D. (2002). Financial Engineering and Computation. Principles, Mathematics, Algorithms. Cambridge University Press, Cambridge.

    Google Scholar 

  • Maller, R.A., Solomon, D.H., Szimayer, A. (2006). A multinomial approximation for American option prices in Lévy process models. Mathematical Finance, 16, 613–633.

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, L.A., Webber, N.J. (2001/02). Pricing in three-factor models using icosahedral lattices. Journal of Computational Finance, 5(2), 1–33.

    Google Scholar 

  • Pelsser, A., Vorst, T. (1994). The binomial model and the Greeks. Journal of Derivatives, 1, 45–49.

    Article  Google Scholar 

  • Rendleman, R.J., Bartter, B.J. (1979). Two-state option pricing. Journal of Finance, 34, 1093–1110.

    Article  Google Scholar 

  • Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 69, 771–818.

    Article  Google Scholar 

  • Seydel, R.U. (2009). Tools for Computational Finance. 4th Edition. Springer, Berlin.

    MATH  Google Scholar 

  • Wilmott, P., Dewynne, J., Howison, S. (1996). Option Pricing. Mathematical Models and Computation. Oxford Financial Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger U. Seydel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seydel, R.U. (2012). Lattice Approach and Implied Trees. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_20

Download citation

Publish with us

Policies and ethics