Skip to main content

Fitting High-Dimensional Copulae to Data

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

This paper make an overview of the copula theory from a practical side. We consider different methods of copula estimation and different Goodness-of-Fit tests for model selection. In the GoF section we apply Kolmogorov-Smirnov and Cramer-von-Mises type tests and calculate power of these tests under different assumptions. Novating in this paper is that all the procedures are done in dimensions higher than two, and in comparison to other papers we consider not only simple Archimedean and Gaussian copulae but also Hierarchical Archimedean Copulae. Afterwards we provide an empirical part to support the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barbe, P., Genest, C., Ghoudi, K., & Rémillard, B. (1996). On Kendalls’s process. Journal of Multivariate Analysis, 58, 197–229.

    Article  MathSciNet  MATH  Google Scholar 

  • Breymann, W., Dias, A., & Embrechts, P. (2003). Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 1, 1–14.

    Article  MathSciNet  Google Scholar 

  • Chen, S. X., & Huang, T. (2007). Nonparametric estimation of copula functions for dependence modeling. The Canadian Journal of Statistics, 35, 265–282.

    Article  MATH  Google Scholar 

  • Chen, X., & Fan, Y. (2005). Pseudo-likelihood ratio tests for model selection in semiparametric multivariate copula models. The Canadian Journal of Statistics, 33(2), 389–414.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X., & Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspesification. Journal of Econometrics, 135, 125–154.

    Article  MathSciNet  Google Scholar 

  • Chen, X., Fan, Y., & Patton, A. (2004). Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates. Discussion paper 483, Financial Markets Group, London School of Economics.

    Google Scholar 

  • Chen, X., Fan, Y., & Tsyrennikov, V. (2006). Efficient estimation of semiparametric multivariate copula models. Journal of the American Statistical Association, 101(475), 1228–1240.

    Article  MathSciNet  MATH  Google Scholar 

  • Choros, B., Härdle, W., & Okhrin, O. (2009). CDO and HAC. SFB 649 Discussion Paper 2009-038, Sonderforschungsbereich 649, Humboldt Universität zu Berlin, Germany. Available at http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2009-038.pdf.

  • Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.

    Article  MathSciNet  MATH  Google Scholar 

  • Dall’Aglio, G. (1972). Fréchet classes and compatibility of distribution functions. Symp. Math., 9, 131–150.

    MathSciNet  Google Scholar 

  • Dobrić, J., & Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics and Data Analysis, 51, 4633 – 4642.

    Article  MathSciNet  MATH  Google Scholar 

  • Embrechts, P., McNeil, A. J., & Straumann, D. (1999). Correlation and dependence in risk management: Properties and pitfalls. RISK, 12(5), 69–71.

    Google Scholar 

  • Fama, E. F. (1965). The behavior of stock market prices. Journal of Business, 38(1), 34–105.

    Article  Google Scholar 

  • Fermanian, J.-D. (2005). Goodness-of-fit tests for copulas. Journal of Multivariate Analysis, 95(1), 119–152.

    Article  MathSciNet  MATH  Google Scholar 

  • Fermanian, J.-D., & Scaillet, O. (2003). Nonparametric estimation of copulas for time series. Journal of Risk, 5, 25–54.

    Google Scholar 

  • Filler, G., Odening, M., Okhrin, O., & Xu, W. (2010). On the systemic nature of weather risk. Agricultural Finance Review. 70(2), 267–284.

    Article  Google Scholar 

  • Frank, M. J. (1979). On the simultaneous associativity of f(x, y) and \(x + y - f(x,y)\). Aequationes Mathematicae, 19, 194–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont donnés. Annales de l ’Université de Lyon, 4, 53–84.

    Google Scholar 

  • Genest, C., Ghoudi, K., & Rivest, L.-P. (1995). A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82, 543–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., Quessy, J.-F., & Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the probability integral transformation. Scandinavian Journal of Statistics, 33, 337–366.

    Article  MATH  Google Scholar 

  • Genest, C., & Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de l’Institut Henri Poincaré: Probabilités et Statistiques, 44, 1096–1127.

    Article  MATH  Google Scholar 

  • Genest, C., & Rivest, L.-P. (1989). A characterization of Gumbel family of extreme value distributions. Statistics and Probability Letters, 8, 207–211.

    Article  MathSciNet  MATH  Google Scholar 

  • Genest, C., & Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 1034–1043.

    Article  MathSciNet  MATH  Google Scholar 

  • Giacomini, E., Härdle, W. K., & Spokoiny, V. (2009). Inhomogeneous dependence modeling with time-varying copulae. Journal of Business and Economic Statistics, 27(2), 224–234.

    Article  MathSciNet  Google Scholar 

  • Gumbel, E. J. (1960). Distributions des valeurs extrêmes en plusieurs dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171–173.

    MathSciNet  MATH  Google Scholar 

  • Härdle, W., Okhrin, O., & Okhrin, Y. (2010). Time varying hierarchical Archimedean copulae. submitted for publication.

    Google Scholar 

  • Härdle, W., & Simar, L. (2007). Applied Multivariate Statistical Analysis (2 ed.). Heidelberg: Springer.

    MATH  Google Scholar 

  • Härdle, W. K., & Linton, O. (1994). Applied nonparametric methods. In R. Engle, & D. McFadden (Eds.) Handbook of Econometrics. North-Holland: Elsevier.

    Google Scholar 

  • Hennessy, D. A., & Lapan, H. E. (2002). The use of Archimedean copulas to model portfolio allocations. Mathematical Finance, 12, 143–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoeffding, W. (1940). Masstabinvariante Korrelationstheorie. Schriften des Mathematischen Instituts und des Instituts für Angewandte Mathematik der Universität Berlin, 5(3), 179–233.

    Google Scholar 

  • Hoeffding, W. (1941). Masstabinvariante Korrelationsmasse für diskontinuierliche Verteilungen. Arkiv für matematischen Wirtschaften und Sozial forschung, 7, 49–70.

    Google Scholar 

  • Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models. Journal of Multivariate Analisys, 94, 401–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Jones, M. C. (1993). Simple boundary corrections for kernel density estimation. Statistic Computing, 3, 135–146.

    Article  Google Scholar 

  • Junker, M., & May, A. (2005). Measurement of aggregate risk with copulas. Econometrics Journal, 8, 428–454.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, T.-H., & Long, X. (2009). Copula-based multivariate garch model with uncorrelated dependent errors. Journal of Econometrics, 150(2), 207–218.

    Article  MathSciNet  Google Scholar 

  • Lejeune, M., & Sarda, P. (1992). Smooth estimators of distribution and density functions. Computational Statistics & Data Analysis, 14, 457–471.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, D. X. (2000). On default correlation: A copula function approach. The Journal of Fixed Income, 6, 43–54.

    Article  Google Scholar 

  • Mandelbrot, B. (1965). The variation of certain speculative prices. Journal of Business, 36(4), 34–105.

    Google Scholar 

  • Marshall, A. W., & Olkin, J. (1988). Families of multivariate distributions. Journal of the American Statistical Association, 83, 834–841.

    Article  MathSciNet  MATH  Google Scholar 

  • McNeil, A. J. (2008). Sampling nested Archimedean copulas. Journal Statistical Computation and Simulation, 78(6), 567–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Nelsen, R. B. (2006). An Introduction to Copulas. New York: Springer.

    MATH  Google Scholar 

  • Okhrin, O., Okhrin, Y., & Schmid, W. (2008). On the structure and estimation of hierarchical Archimedean copulas. under revision.

    Google Scholar 

  • Okhrin, O., Okhrin, Y., & Schmid, W. (2009). Properties of Hierarchical Archimedean Copulas. SFB 649 Discussion Paper 2009-014, Sonderforschungsbereich 649, Humboldt-Universität zu Berlin, Germany. Available at http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2009-014.pdf.

  • Patton, A. J. (2004). On the out-of-sample importance of skewness and asymmetric dependence for asset allocation. Journal of Financial Econometrics, 2, 130–168.

    Article  Google Scholar 

  • Renyi, A. (1970). Probability Theory. Amsterdam: North-Holland.

    Google Scholar 

  • Rosenblatt, M. (1952). Remarks on a multivariate transformation. The Annals of Mathematical Statistics, 23, 470–472.

    Article  MathSciNet  MATH  Google Scholar 

  • Savu, C., & Trede, M. (2004). Goodness-of-fit tests for parametric families of Archimedean copulas. Discussion paper, University of Muenster.

    Google Scholar 

  • Sklar, A. (1959). Fonctions dé repartition á n dimension et leurs marges. Publ. Inst. Stat. Univ. Paris, 8, 299–231.

    MathSciNet  Google Scholar 

  • Wang, W., & Wells, M. (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95, 62–76.

    Article  MathSciNet  MATH  Google Scholar 

  • Whelan, N. (2004). Sampling from Archimedean copulas. Quantitative Finance, 4, 339–352.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The financial support from the Deutsche Forschungsgemeinschaft through SFB 649 “Ökonomisches Risiko”, Humboldt-Universität zu Berlin is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ostap Okhrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Okhrin, O. (2012). Fitting High-Dimensional Copulae to Data. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_17

Download citation

Publish with us

Policies and ethics