Skip to main content

Simulation-Based Estimation Methods for Financial Time Series Models

  • Chapter
  • First Online:
Handbook of Computational Finance

Part of the book series: Springer Handbooks of Computational Statistics ((SHCS))

Abstract

This chapter overviews some recent advances on simulation-based methods of estimating financial time series models that are widely used in financial economics. The simulation-based methods have proven to be particularly useful when the likelihood function and moments do not have tractable forms and hence the maximum likelihood (ML) method and the generalized method of moments (GMM) are difficult to use. They are also useful for improving the finite sample performance of the traditional methods. Both frequentist and Bayesian simulation-based methods are reviewed. Frequentist’s simulation-based methods cover various forms of simulated maximum likelihood (SML) methods, simulated generalized method of moments (SGMM), efficient method of moments (EMM), and indirect inference (II) methods. Bayesian simulation-based methods cover various MCMC algorithms. Each simulation-based method is discussed in the context of a specific financial time series model as a motivating example. Empirical applications, based on real exchange rates, interest rates and equity data, illustrate how to implement the simulation-based methods. In particular, we apply SML to a discrete time stochastic volatility model, EMM to estimate a continuous time stochastic volatility model, MCMC to a credit risk model, the II method to a term structure model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aït-Sahalia, Y. (1999). Transition Densities for interest rate and other non-linear diffusions. Journal of Finance, 54, 1361–1395.

    Article  Google Scholar 

  • Aït-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusion: A closed-form approximation approach. Econometrica, 70, 223–262.

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia, Y. (2008). Closed-form likelihood expansions for multivariate diffusions. Annals of Statistics, 36, 906–937.

    Article  MathSciNet  MATH  Google Scholar 

  • Aït-Sahalia, Y., & Yu, J. (2006). Saddlepoint approximations for continuous- ime markov processes. Journal of Econometrics, 134, 507–551.

    Article  MathSciNet  Google Scholar 

  • Andrews, D. W. K. (1993). Exactly median-unbiased estimation of first order autoregressive/unit Root models. Econometrica, 61, 139–166.

    Article  MathSciNet  MATH  Google Scholar 

  • Bansal, R., Gallant, A. R., Hussey, R. & Tauchen, G. (1995). Nonparametric estimation of structural models for high-frequency currency market data. Journal of Econometrics, 66, 251–287.

    Article  MATH  Google Scholar 

  • Bauwens, L., & Galli, F. (2008). Efficient importance sampling for ML estimation of SCD models. Computational Statistics and Data Analysis, 53, 1974–1992.

    Article  MathSciNet  Google Scholar 

  • Bauwens, L., & Hautsch, N. (2006). Stochastic conditional intensity processes. Journal of Financial Econometrics, 4, 450–493.

    Article  Google Scholar 

  • Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81, 637–659.

    Article  Google Scholar 

  • Broto, C., & Ruiz, E. (2004). Estimation methods for stochastic volatility models: a survey. Journal of Economic Surveys, 18, 613–649.

    Article  Google Scholar 

  • Chib, S. (2001). Markov Chain Monte Carlo methods: Computation and inference. In J.J. Heckman & E. Leamer (Eds.), Handbook of econometrics (Vol. 5, pp. 3569–3649). Amsterdam: North-Holland

    Google Scholar 

  • Chib, S., Nardari, F., & Shephard, N. (2002). Markov Chain Monte Carlo methods stochastic volatility models. Journal of Econometrics, 108, 281–316.

    Article  MathSciNet  MATH  Google Scholar 

  • Danielsson, J. (1994). Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics, 64, 375–400.

    Article  MATH  Google Scholar 

  • Duan, J. C., & Fulop, A. (2009). Estimating the structural credit risk model when equity prices are contaminated by trading noises. Journal of Econometrics, 150, 288–296.

    Article  MathSciNet  Google Scholar 

  • Duffie, D., & Singleton, K. J. (1993). Simulated moments estimation of markov models of asset prices. Econometrica, 61, 929–952.

    Article  MathSciNet  MATH  Google Scholar 

  • Duffie, D., & Stanton, R. (2008). Evidence on simulation inference for near unit-root processes with implications for term structure estimation. Journal of Financial Econometrics, 6, 108–142.

    Article  Google Scholar 

  • Duffie, D., Pan, J., & Singleton, K. J. (2000). Transform analysis and asset pricing for affine jump-diffusions. Econometrica, 68, 1343–1376.

    Article  MathSciNet  MATH  Google Scholar 

  • Durbin, J., & Koopman, S. J. (2000). Time series analysis of non-gaussian observations based on state space models from both classical and bayesian perspectives (with discussion). Journal of the Royal Statistical Society Series B, 62, 3–56.

    Article  MathSciNet  MATH  Google Scholar 

  • Durham, G. (2006). Monte carlo methods for estimating, moothing, and filtering one and two-factor stochastic volatility models. Journal of Econometrics, 133, 273–305.

    Article  MathSciNet  Google Scholar 

  • Durham, G. (2007). SV mixture models with application to S&P 500 index returns. Journal of Financial Economics, 85, 822–856.

    Article  Google Scholar 

  • Durham, G., & Gallant, A. R. (2002). Numerical techniques for maximum likelihood estimation of continuous-time iffusion processes. Journal of Business and Economic Statistics, 20, 297–316.

    Article  MathSciNet  Google Scholar 

  • Efron, B. (1982). The Jackknife, the Bootstrap and other resampling method. Philadephia: SIAM

    Book  Google Scholar 

  • Elerian, O. (1998). A Note on the Existence of a Closed-form Conditional Transition Density for the Milstein Scheme, Economics discussion paper 1998-W18, Nuffield College, Oxford.

    Google Scholar 

  • Elerian, O., Chib, S., & N. Shephard (2001). Likelihood inference for discretely observed non-linear diffusions. Econometrica, 69, 959–993.

    Article  MathSciNet  MATH  Google Scholar 

  • Ferguson, T. (1973). A bayesian analysis of some nonparametric problems. Annals of Statistics, 1, 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallant, A. R., & Long, L. R. (1997). Estimating stochastic differential equations efficiently by minimum chi-squared. Biometrika, 84, 125–141.

    Article  MathSciNet  MATH  Google Scholar 

  • Gallant, A. R., & Tauchen, G. (1996a). Which moments to match?. Econometric Theory, 12, 657–681.

    Article  MathSciNet  Google Scholar 

  • Gallant, A. R., & Tauchen, G. (1996b). Which moments to match?. Econometric Theory, 12, 657–681.

    Article  MathSciNet  Google Scholar 

  • Gallant, A. R., & Tauchen, G. (1989). Seminonparametric estimation of conditionally constrained heterogeneous processes: Asset pricing applications. Econometrica57, 1091–1120.

    Google Scholar 

  • Gallant, A. R., & Tauchen, G. (1998). Reprojecting partially observed systems with application to interest rate diffusions. Journal of the American Statistical Association, 93, 10–24.

    Article  MATH  Google Scholar 

  • Gallant, A. R., & Tauchen, G. (2001a). EMM: A program for efficient method of moments estimation. User’s Guide, Department of Economics, University of North Carolina.

    Google Scholar 

  • Gallant, A. R., & Tauchen, G. (2001b). SNP: A program for nonparametric time series analysis. User’s Guide, Department of Economics, University of North Carolina.

    Google Scholar 

  • Gallant, A. R., & Tauchen, G. (2001c). Efficient method of moments. Working paper, Department of Economics, University of North Carolina.

    Google Scholar 

  • Geweke, J. (1994). Bayesian comparison of econometric models. Working Paper, Federal Reserve Bank of Minneapolis, Minnesota.

    Google Scholar 

  • Gordon, N. J., Salmond, D. J., & Smith, A. E. M. (1993). A novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEEE-Proceedings F, 140, 107–133.

    Google Scholar 

  • Gouriéroux, C., & Monfort, A. (1995). Simulation based econometric methods. London: Oxford University Press.

    Google Scholar 

  • Gouriéroux, C., Monfort, A., & Renault, E. (1993). Indirect inference. Journal of Applied Econometrics, 8, S85–S118.

    Article  Google Scholar 

  • Gouriéroux, C., Renault, E. & Touzi, N. (2000). Calibration by simulation for small sample bias correction. In R.S. Mariano, T. Schuermann, & M. Weeks (Eds.), Simulation-based inference in econometrics: Methods and applications (pp. 328–358). London: Cambridge University Press.

    Chapter  Google Scholar 

  • Gouriéroux, C., Phillips, P. C. B., & Yu, J. (2010). Indirect inference for dynamic panel models. Journal of Econometrics, forthcoming.

    Google Scholar 

  • Hall, P. (1992). The bootstrap and edgeworth expansion. Berlin: Springer.

    Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054.

    Article  MathSciNet  MATH  Google Scholar 

  • Harvey, A. C., & Shephard, N. (1996). The estimation of an asymmetric stochastic volatility model for asset returns. Journal of Business and Economic Statistics, 14, 429–434.

    Google Scholar 

  • Harvey, A. C., Ruiz, E., & Shephard, N. (1994). Multivariate stochastic variance models. Review of Economic Studies61, 247–264.

    Google Scholar 

  • He, H. (1990). Moment Approximation and Estimation of Diffusion Models of Asset Prices, Working paper, University of California at Berkeley.

    Google Scholar 

  • Heston, S. L. (1993). A closed-form solution for options with stochastic volatility, with application to bond and currency options. Review of Financial Studies, 6, 327–343.

    Article  Google Scholar 

  • Huang, S. J., & Yu, J. (2010). Bayesian analysis of structural credit risk models with microstructure noises. Journal of Economic Dynamics and Control, 34, 2259–2272.

    Article  MathSciNet  MATH  Google Scholar 

  • Hull, J., & White, A. (1987). The pricing of options on assets with stochastic volatilities. Journal of Finance, 42, 281–300.

    Article  Google Scholar 

  • Jacquier, E., Polson, N. G., & Rossi, P. E. (1994). Bayesian analysis of stochastic volatility models (with discussion). Journal of Business and Economic Statistics, 12, 371–417.

    Google Scholar 

  • Jensen, M. J., & Maheu, J. M. (2008). Bayesian semiparametric stochastic volatility modeling, Working Paper No. 2008-15, Federal Reserve Bank of Atlanta.

    Google Scholar 

  • Johannes, M., & Polson, N. (2009). MCMC methods for continuous time asset pricing models. In Aït-Sahalia & Hansen (Eds.), Handbook of financial econometrics, 2, 1–72, North-Holland.

    Google Scholar 

  • Jungbacker, B., & Koopman, S. J. (2007). Monte Carlo estimation for nonlinear non-Gaussian state space models. Biometrika, 94, 827–839.

    Article  MathSciNet  MATH  Google Scholar 

  • Kim, S., Shephard, N., & Chib, S. (1998). Stochastic volatility: Likelihood inference and comparison with ARCH models. Review of Economic Studies65, 361–393.

    Google Scholar 

  • Kitagawa, G. (1996). Monte Carlo filter and smoother for Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5, 1–25.

    MathSciNet  Google Scholar 

  • Kleppe, T., Skaug, H., & Yu, J. (2009). Simulated Maximum Likelihood estimation of continuous time stochastic volatility models. Working paper, Singapore Management University.

    Google Scholar 

  • Koopman, S. J., Shephard, N., & Creal, D. (2009). Testing the assumptions behind importance sampling. Journal of Econometrics, 149, 2–11.

    Article  MathSciNet  Google Scholar 

  • Lee, B. S., & Ingram, B. F. (1991). Simulation estimation of time-series models. Journal of Econometrics, 47, 197–205.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, K. M., & Koopman, S. J. (2004). Estimating stochastic volatility models: A comparison of two importance samplers. Studies in Nonlinear Dynamics and Econometrics, 8, 1–15.

    Google Scholar 

  • Liesenfeld, R., & Richard, J. F. (2003). Univariate and multivariate stochastic volatility models: Estimation and diagnostics. Journal of Empirical Finance, 10, 505–531.

    Article  Google Scholar 

  • Liesenfeld, R., & Richard, J. F. (2006). Classical and bayesian analysis of univariate and multivariate stochastic volatility models. Econometric Reviews, 25, 335–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Lo, A. W. (1988). Maximum likelihood estimation of generalized itô processes with discretely sampled data. Econometric Theory, 4, 231–247.

    Article  MathSciNet  Google Scholar 

  • MacKinnon, J. G., & Smith, A. A. (1998). Approximate bias correction in econometrics. Journal of Econometrics, 85, 205–230.

    Article  MathSciNet  MATH  Google Scholar 

  • McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57, 995–1026.

    Article  MathSciNet  MATH  Google Scholar 

  • McLeish, D. (2005). Monte Carlo simulation and finance. NY: Wiley.

    MATH  Google Scholar 

  • Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29, 449–470.

    Google Scholar 

  • Meyer, R., & Yu, J. (2000). BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal, 3, 198–215.

    Article  MATH  Google Scholar 

  • Meyer, R., Fournier, D. A., & Berg, A. (2003). Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter. Econometrics Journal, 6, 408–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Monfort, A. (1996). A reappraisal of misspecified econometric models. Econometric Theory, 12, 597–619.

    Article  MathSciNet  Google Scholar 

  • Musso, C., Oudjane, N., & Le Gland, F. (2001). Improving regularized particle filters, In A. Doucet, N. de Freitas, & N. Gordon (Eds.), Sequential Monte Carlo methods in practice (pp. 247–271). New York: Springer.

    Google Scholar 

  • Nowman, K. B. (1997). Gaussian estimation of single-factor continuous time models of the term structure of interest rates. Journal of Finance, 52, 1695–1703.

    Article  Google Scholar 

  • Omori, Y., Chib, S., Shephard, N., & Nakajima, J. (2007). Stochastic volatility with leverage: Fast and efficient likelihood inference. Journal of Econometrics, 140, 425–449.

    Article  MathSciNet  MATH  Google Scholar 

  • Pakes, A., & Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. Econometrica, 57(5), 1027–1057.

    Article  MathSciNet  MATH  Google Scholar 

  • Pedersen, A. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observation. Scandinavian Journal of Statistics, 22, 55–71.

    MATH  Google Scholar 

  • Phillips, P. C. B., & Yu, J. (2005a). Jackknifing bond option prices. Review of Financial Studies, 18, 707–742.

    Article  Google Scholar 

  • Phillips, P. C. B., & Yu, J. (2005b). Comments: A selective overview of nonparametric methods in financial econometrics. Statistical Science, 20, 338–343.

    Article  MATH  Google Scholar 

  • Phillips, P. C. B., & Yu, J. (2009a). Maximum likelihood and gaussian estimation of continuous time models in finance. In Andersen, T.G., Davis, R.A. and J.P. Kreiss (Eds.), Handbook of financial time series, 497–530, Springer-Verlag.

    Google Scholar 

  • Phillips, P. C. B., & Yu, J. (2009b). Simulation-based estimation of contingent-claims prices. Review of Financial Studies, 22, 3669–3705.

    Article  Google Scholar 

  • Pitt, M. (2002). Smooth particle filters likelihood evaluation and maximisation, Working Paper, University of Warwick.

    Google Scholar 

  • Pitt, M., & Shephard, N. (1999a). Filtering via simulation: Auxiliary particle filter. The Journal of the American Statistical Association, 94, 590–599.

    Article  MathSciNet  MATH  Google Scholar 

  • Pitt, M., & Shephard, N. (1999b). Time varying covariances: A factor stochastic volatility approach. In: J. M. Bernardo, J. O. Berger, A. P. David, & A. F. M. Smith (Eds.), Bayesian statistics 6 (pp. 547–570). Oxford: Oxford University Press.

    Google Scholar 

  • Pritsker, M. (1998). Nonparametric density estimation and tests of continuous time interest rate models. Review of Financial Studies, 11, 449–487.

    Article  Google Scholar 

  • Richard, J. F., & Zhang, W. (2006). Efficient high-dimensional importance. Journal of Econometrics, 141, 1385–1411.

    Article  MathSciNet  Google Scholar 

  • Sandmann, G., & Koopman, S. J. (1998). Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics, 87, 271–301.

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non-Gaussian measurement time series. Biometrika, 84, 653–667.

    Article  MathSciNet  MATH  Google Scholar 

  • Skaug, H., & Yu, J. (2007). Automated Likelihood Based Inference for Stochastic Volatility Models, Working Paper, Singapore Management University.

    Google Scholar 

  • Stern, S. (1997). Simulation-based estimation. Journal of Economic Literature, 35, 2006–2039.

    Google Scholar 

  • Tang, C. Y., & Chen, S. X. (2009). Parameter estimation and bias correction for diffusion processes. Journal of Econometrics, 149, 65–81.

    Article  MathSciNet  Google Scholar 

  • Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic processes – a study of the daily sugar prices 1961–75. In O. D. Anderson (Ed.), Time series analysis: Theory and practice, 1 (pp. 203–226). Amsterdam: North-Holland.

    Google Scholar 

  • Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5, 177–186.

    Article  Google Scholar 

  • Yu, J. (2005). On leverage in a stochastic volatility model. Journal of Econometrics, 127, 165–178.

    Article  MathSciNet  Google Scholar 

  • Yu, J. (2009a). Bias in the Estimation of the Mean Reversion Parameter in Continuous Time Models, Working Paper, Singapore Management University.

    Google Scholar 

  • Yu, J. (2009b). Semiparametric Stochastic Volatility Model, Working Paper, Singapore Management University.

    Google Scholar 

  • Yu, J., & Meyer, R. (2006). Multivariate stochastic volatility models: Bayesian estimation and model comparison. Econometric Reviews, 25, 361–384.

    Article  MathSciNet  MATH  Google Scholar 

  • Yu, J., Yang, Z., & Zhang, X. B. (2006). A class of nonlinear stochastic volatility models and its implications on pricing currency options, Computational Statistics and Data Analysis, 51, 2218–2231.

    Article  MathSciNet  MATH  Google Scholar 

  • Zehna, P., (1966). Invariance of maximum likelihood estimation. Annals of Mathematical Statistics, 37, 744–744.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge financial support from the Ministry of Education AcRF Tier 2 fund under Grant No. T206B4301-RS. Data and program code used in this paper can be download from my website at http://www.mysmu.edu/faculty/yujun/research.html.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yu, J. (2012). Simulation-Based Estimation Methods for Financial Time Series Models. In: Duan, JC., Härdle, W., Gentle, J. (eds) Handbook of Computational Finance. Springer Handbooks of Computational Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17254-0_15

Download citation

Publish with us

Policies and ethics