Skip to main content

Updating the Mammalian Cell Cycle: The Role of Interphase Cdks in Tissue Homeostasis and Cancer

  • Chapter
  • First Online:
Two Faces of Evil: Cancer and Neurodegeneration

Part of the book series: Research and Perspectives in Alzheimer's Disease ((ALZHEIMER))

  • 570 Accesses

Abstract

Genetic interrogation of the mammalian cell cycle has revealed that the essential role of interphase Cdks is not to specifically drive the various phases of the cycle, as previously proposed in widely accepted models, but to sustain proliferation of specialized cells at various times during embryonic or postnatal development. Indeed, genetic studies have indicated that Cdk1 can drive the mammalian cell cycle in the absence of interphase Cdks. The molecular bases for the essential requirement of interphase Cdks in selected cell types are still poorly understood. However, these observations have important implications for understanding the role of Cdk misregulation in cancer. Indeed, it is likely that misregulation of Cdks may only confer proliferative advantages to selected cell types. More importantly, it is also possible that certain cells may become dependent of selective interphase Cdks only when their proliferation is driven by defined oncogenes. Recent studies have illustrated the requirement for Cdk4 in HER2-overexpressed mammary adenocarcinomas and K-Ras oncogene-driven lung adenocarcinomas but not in the corresponding normal tissues. Likewise, Cdk2 plays an important role in the development of Myc-induced lymphomas. These findings may open the door to the design of novel therapeutic strategies that may benefit cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleem E, Kiyokawa H, Kaldis P (2005) Cdc2-cyclin E complexes regulate the G1/S phase transition. Nat Cell Biol 7:831–836

    Article  PubMed  CAS  Google Scholar 

  • Atanasoski S, Boentert M, De Ventura L, Pohl H, Baranek C, Beier K, Young P, Barbacid M, Suter U (2008) Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4). Mol Cell Neurosci 37:519–527

    Article  PubMed  CAS  Google Scholar 

  • Barrière C, Santamaría D, Cerqueira A, Galán J, Martín A, Ortega S, Malumbres M, Dubus P, Barbacid M (2007) Mice thrive without Cdk4 and Cdk2. Mol Oncol 1:72–83

    Article  PubMed  Google Scholar 

  • Berthet C, Aleem E, Coppola V, Tessarollo L, Kaldis P (2003) Cdk2 knockout mice are viable. Curr Biol 13:1775–1785

    Article  PubMed  CAS  Google Scholar 

  • Berthet C, Klarmann KD, Hilton MB, Suh HC, Keller JR, Kiyokawa H, Kaldis P (2006) Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev Cell 10:563–573

    Article  PubMed  CAS  Google Scholar 

  • Campaner S, Doni M, Hydbring P, Verrecchia A, Bianchi L, Sardella D, Schleker T, Perna D, Tronnersjö S, Murga M, Fernandez-Capetillo O, Barbacid M, Larsson LG, Amati B (2010) Cdk2 suppresses cellular senescence induced by the c-myc oncogene. Nat Cell Biol 12:54–59

    Article  PubMed  CAS  Google Scholar 

  • Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  PubMed  CAS  Google Scholar 

  • Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, Barbacid M (2010) Genetic analysis of Ras signalling pathways in cell proliferation, migration and survival. EMBO J 29:1091–104

    Article  PubMed  CAS  Google Scholar 

  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E, Albassam M, Zheng X, Leopold WR, Pryer NK, Toogood PL (2004) Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3:1427–1438

    PubMed  CAS  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  PubMed  CAS  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5:773–785

    Article  PubMed  CAS  Google Scholar 

  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P (2004) Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Barbacid M (2005) Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Sotillo R, Santamaría D, Galán J, Cerezo A, Ortega S, Dubus P, Barbacid M (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504

    Article  PubMed  CAS  Google Scholar 

  • Malumbres M, Pevarello P, Barbacid M, Bischoff JR (2008) CDK inhibitors in cancer therapy: what is next? Trends Pharmacol Sci 29:16–21

    Article  PubMed  CAS  Google Scholar 

  • Martín J, Hunt SL, Dubus P, Sotillo R, Néhmé-Pélluard F, Magnuson MA, Parlow AF, Malumbres M, Ortega S, Barbacid M (2003) Genetic rescue of Cdk4 null mice restores pancreatic beta-cell proliferation but not homeostatic cell number. Oncogene 22:5261–5269

    Article  PubMed  Google Scholar 

  • Martín A, Odajima J, Hunt SL, Dubus P, Ortega S, Malumbres M, Barbacid M (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 7:591–598

    Article  PubMed  Google Scholar 

  • Massague J (2004) G1 cell-cycle control and cancer. Nature 432:298–306

    Article  PubMed  CAS  Google Scholar 

  • Mettus RV, Rane SG (2003) Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 22:8413–8421

    Article  PubMed  CAS  Google Scholar 

  • Moons DS, Jirawatnotai S, Parlow AF, Gibori G, Kineman RD, Kiyokawa H (2002) Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology 143:3001–3008

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1997) The Josef Steiner Lecture: CDKs and cell-cycle control in fission yeast: relevance to other eukaryotes and cancer. Int J Cancer 71:707–708

    Article  PubMed  CAS  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602:73–87

    PubMed  CAS  Google Scholar 

  • Ortega S, Prieto I, Odajima J, Martín A, Dubus P, Sotillo R, Barbero JL, Malumbres M, Barbacid M (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat Genet 35:25–31

    Article  PubMed  CAS  Google Scholar 

  • Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría S, Barbacid M (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategic for non small cell lung carcinoma. Cancer Cell 18:63–73

    Article  PubMed  CAS  Google Scholar 

  • Rane SG, Dubus P, Mettus RV, Galbreath EJ, Boden G, Reddy EP, Barbacid M (1999) Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nat Genet 22:44–52

    Article  PubMed  CAS  Google Scholar 

  • Rane SG, Cosenza SC, Mettus RV, Reddy EP (2002) Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol Cell Biol 22:644–656

    Article  PubMed  CAS  Google Scholar 

  • Reddy HK, Mettus RV, Rane SG, Graña X, Litvin J, Reddy EP (2005) Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res 65:10174–10178

    Article  PubMed  CAS  Google Scholar 

  • Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M, Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448:811–815

    Article  PubMed  Google Scholar 

  • Satyanarayana A, Berthet C, Lopez-Molina J, Coppola V, Tessarollo L, Kaldis P (2008) Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135:3389–3400

    Article  PubMed  CAS  Google Scholar 

  • Shapiro GI (2006) Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24:1770–1783

    Article  PubMed  CAS  Google Scholar 

  • Sotillo R, Dubus P, Martín J, de la Cueva E, Ortega S, Malumbres M, Barbacid M (2001a) Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J 20:6637–6647

    Article  PubMed  CAS  Google Scholar 

  • Sotillo R, García JF, Ortega S, Martin J, Dubus P, Barbacid M, Malumbres M (2001b) Invasive melanoma in Cdk4-targeted mice. Proc Natl Acad Sci USA 98:13312–13317

    Article  PubMed  CAS  Google Scholar 

  • Tsutsui T, Hesabi B, Moons DS, Pandolfi PP, Hansel KS, Koff A, Kiyokawa H (1999) Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity. Mol Cell Biol 19:7011–7019

    PubMed  CAS  Google Scholar 

  • Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Büschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Article  PubMed  Google Scholar 

  • Ye X, Zhu C, Harper JW (2001) A premature-termination mutation in the Mus musculus cyclin-dependent kinase 3 gene. Proc Natl Acad Sci USA 98:1682–1686

    Article  PubMed  CAS  Google Scholar 

  • Yu Q, Sicinska E, Geng Y, Ahnström M, Zagozdzon A, Kong Y, Gardner H, Kiyokawa H, Harris LN, Stål O, Sicinski P (2006) Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9:23–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by grants from the Spanish Ministry of Science and Innovation (MICINN) (SAF2006-11773 and Consolider-Ingenio 2010, CSD2007-00017), the 7th Framework Programme of the European Union (CHEMORES LSHG-CT-2007-037665) and the European Research Council (Advanced Grant ERC-2009-AdG_20090506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Barbacid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbacid, M. (2011). Updating the Mammalian Cell Cycle: The Role of Interphase Cdks in Tissue Homeostasis and Cancer. In: Curran, T., Christen, Y. (eds) Two Faces of Evil: Cancer and Neurodegeneration. Research and Perspectives in Alzheimer's Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16602-0_1

Download citation

Publish with us

Policies and ethics