Skip to main content

Lipid Bilayer-Membrane Protein Coupling

  • Chapter
  • First Online:
  • 2480 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Lipid organization in membranes forms liquid crystalline structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aguilella, V. M. and Bezrukov, S. M.: Alamethicin channel conductance modified by lipid charge. Eur. Biophys. J. 30, 233–241 (2001).

    Google Scholar 

  2. Allen, T. W., Andersen, O.S. and Roux, B.: Energetics of ion conduction through the gramicidin channel. Proc. Natl. Acad. Sci. 101, 117–122 (2004).

    Google Scholar 

  3. Andersen, O.S., D. B. Sawyer and Koeppe, R.E. II. In: Biomembrane structure and Function, K. R. K. Easwaran and B. Gaber (eds.) p227. Schenectady, New York: Adenine (1992).

    Google Scholar 

  4. Andersen, O.S.: Ion movement through Gramicidin A Channels - Studies on the Diffusion-controlled Association Step. Biophys. J. 41, 147–165 (1983).

    Google Scholar 

  5. Andersen, O.S., Nielsen, C., Maer, A. M., Lundbæk, J. A., Goulian, M. and Koeppe, R.E. II: Gramicidin channels: molecular force transducers in lipid bilayers. Biol. Skr. Dan. Vid. Selsk. 49, 75–82 (1998).

    Google Scholar 

  6. Andersen, O.S. and Koeppe, R.E. II: Bilayer thickness and membrane protein function: an energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107–130 (2007).

    Google Scholar 

  7. Andersen, O.S., Koeppe, R.E. II and Roux, B.: Gramicidin Channels. IEEE Trans. Nanobiosci. 4, 10–20 (2005).

    Google Scholar 

  8. Arseniev, A. S., Barsukov, I. L., Bystrov, V.F. and Ovchinnikov, Yu. A.: Biol. Membr. 3, 437 (1986).

    Google Scholar 

  9. Ashrafuzzaman, M. and Beck, H.: In Vortex dynamics in two-dimensional Josephson junction arrays, University of Neuchatel, ch 5 p 85, (2004) http://doc.rero.ch/record/2894ln=fr

  10. Ashrafuzzaman, M. and Andersen, O.S.: Lipid bilayer elasticity and intrinsic curvature as regulators of channel function: a single molecule study. Biophys. J. 421A (2007).

    Google Scholar 

  11. Ashrafuzzaman, M., McElhaney, R. N. and Andersen, O.S.: One antimicrobial peptide (gramicidin S) can affect the function of another (gramicidin A or alamethicin) via effects on the phospholipid bilayer. Biophys. J. 94 6–7, (2008).

    Google Scholar 

  12. Ashrafuzzaman, M., Andersen, O.S. and McElhaney, R. N.: The antimicrobial peptide gramicidin S permeabilizes phospholipid bilayer membranes without forming discrete ion channels. Biochim. Biophys. Acta 1778, 2814–2822 (2008).

    Google Scholar 

  13. Ashrafuzzaman, Md., Lampson. M.A., Greathouse, D.V., Koeppe II, R.E., Andersen, O.S.: Manipulating lipid bilayer material properties by biologically active amphipathic molecules. J. Phys.: Condens. Mat. 18, S1235–1255 (2006).

    Google Scholar 

  14. Ashrafuzzaman, Md., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs Thiocolchicoside and Taxol Permeabilize Lipid Bilayer Membranes by Forming Ion Pores. J. of Physics: Conf. Series 329, 012029, 1–16 (2011).

    Google Scholar 

  15. Ashrafuzzaman, Md., Tseng, C.-Y., Duszyk, M. and Tuszynski, J. A.: Chemotherapy drugs form ion pores in membranes due to physical interactions with lipids. submitted (2011).

    Google Scholar 

  16. Benz, R., Fröhlich, O., Läuger, P., and Montal, M.: Electrical capacity of black lipid films and of lipid bilayers made from monolayers. Biochim. Biophys. Acta 394, 323–334, (1975).

    Google Scholar 

  17. Berneche, S. and Roux, B.: Molecular Dynamics of the KcsA \(K^+\) Channel in a Bilayer Membrane. Biophys. J. 78, 2900–2917 (2000).

    Google Scholar 

  18. Bezrukov, S.M., Rand, R.P., Vodyanoy, I. and Parsegian, V. A.: Lipid packing stress and polypeptide aggregation : alamethicin channel probed by proton titration of lipidcharge. Faraday Discuss. 111, 173–183 (1998).

    Google Scholar 

  19. Boheim, G.: Statistical analysis of alamethicin channels in black lipid membranes. J. Mem. Biol. 19, 277–303 (1974).

    Google Scholar 

  20. Brown, M.F.: Modulation of rhodopsin function by properties of the membrane bilayer. Chem. Phys. Lipids 73, 159–180 (1994).

    Google Scholar 

  21. Dan, N. and Safran, S.A.: Effect of Lipid Characteristics on the structure of Trans-membrane proteins. Biophys. J. 75, 1410–1414 (1998).

    Google Scholar 

  22. Daune, M.: Molecular Biophysics: structures in Motion, Oxford University Press, Oxford (1999).

    Google Scholar 

  23. de Meyer, F. and Smit, B. Comment on “cluster formation of trans-membrane proteins due to hydrophobic mismatching”. Phys. Rev. Lett. 102, 219801 (2009).

    Google Scholar 

  24. Duan, Y., Wu, C., Chowdhury, S., Lee, M.C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T.: A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

    Google Scholar 

  25. Durkin, J. T., Koeppe, R.E. II and Andersen, O.S.: Energetics of gramicidin hybrid channel formation as a test for structural equivalence *1: Side-chain substitutions in the native sequence. J. Mol. Biol. 211, 221–234 (1990).

    Google Scholar 

  26. Durkin, J. T., Providence, L. L., Koeppe, R.E. II and Andersen, O.S.: Energetics of heterodimer formation among gramicidin Analogues with an \(NH_2\)-terminal addition or deletion consequences of missing a residue at the join in the channel. J. Mol. Biol. 231, 1102–1121 (1993).

    Google Scholar 

  27. Evans, E. A. and Hochmuth, R.M.: Curr. Top. Membr. Transp. 10, 1 (1978).

    Google Scholar 

  28. Evans, E., Rawicz, W. and Hofmann, A.F.: In Bile Acids in Gastroenterology Basic and Clinical Advances, edited by A.F. Hofmann, G. Paumgartner and A. Stiehl (Dordrecht: Kluwer-Academic), p 59 (1995).

    Google Scholar 

  29. Finkelstein, A.: Water and nonelectrolyte permeability of lipid bilayer membranes. J. Gen. Physiol. 68, 127–135 (1976).

    Google Scholar 

  30. Goulian, M., Mesquita, O.N., Fygenson, D.K., Nielsen, C., and Andersen., O.S.: Gramicidin channel kinetics under tension. Biophys. J. 74, 328–337 (1998).

    Google Scholar 

  31. Greathouse, D. V., Koeppe, R.E. II, Providence, L. L., Shobana, S. and Andersen, O.S.: Design and characterization of gramicidin channels. Meth. Enzymol. 294, 525–550 (1999).

    Google Scholar 

  32. Grønbech-Jensen, N., Mashl, R. J., Bruinsma, R. F., and Gelbart, W. M.: Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett. 78, 2477–2480 (1997).

    Google Scholar 

  33. Gruner, S. M.: In Biologically Inspired Physics, edited by L. Peliti (New York: Plenum), p 127 (1991).

    Google Scholar 

  34. Gruner, S. M.: Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc. Natl. Acad. Sci. 82, 3665–69 (1985).

    Google Scholar 

  35. Harper, P.E., Mannock, D.A., Lewis, R.N.A.H., McElhaney, R.N. and Gruner, S.M.: X-Ray diffraction structures of some phosphatidylethanolamine lamellar and inverted hexagonal phases. Biophys. J. 81, 2693–2706 (2001).

    Google Scholar 

  36. He, K., Ludtke, S. J., Huang, H. W. and Worcester, D. L.: Antimicrobial peptide pores in membranes detected by neutron in-plane scattering. Biochemistry 34, 15614–15618 (1995).

    Google Scholar 

  37. Helfrich, W.: Elastic properties of lipidbilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703 (1973).

    Google Scholar 

  38. Helfrich, P. and Jakobsson, E.: Calculation of deformation energies and conformations in lipidmembranes containing gramicidin channels. Biophys. J. 57, 1075–1084 (1990).

    Google Scholar 

  39. Heyer, R. J., Muller, R. U. and Finkelstein, A.: Inactivation of monazomycin-induced voltage-dependent conductance in thin lipidmembranes. I. Inactivation produced by long chain quaternary ammonium ions. J. Gen. Physiol. 67, 703–729 (1976).

    Google Scholar 

  40. Huang, H. W.: Deformation free energy of bilayer membrane and its effect on gramicidin channel lifetime. Biophys. J. 50, 1061–1071 (1986).

    Google Scholar 

  41. Hwang, T. C., Koeppe, R.E. II and Andersen, O.S.: Genistein can modulate channel function by a phosphorylation-independent mechanism: importance of hydrophobic mismatch and bilayer mechanics. Biochemistry 42, 13646–58 (2003).

    Google Scholar 

  42. Israelachvili, J.N.: Refinement of the fluid-mosaicmodel of membrane structure. Biochim. Biophys. Acta 469, 221–225 (1977).

    Google Scholar 

  43. Jakalian, A., Bush, B.L., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).

    Google Scholar 

  44. Jakalian, A., Jack, D.B., Bayly, C.I.: Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and Validation. J. Comput. Chem. 23, 1623–1641 (2002).

    Google Scholar 

  45. Katsaras, J., Prosser, R. S., Stinson, R. H. and Davis, J. H.: Constant helical pitch of the gramicidin channel in phospholipid bilayers. Biophys. J. 61, 827–830 (1992).

    Google Scholar 

  46. Keller, S. L., Bezrukov, S. M., Gruner, S. M., Tate, M. W., Vodyanoy, I. and Parsegian, V. A.: Probability of alamethicin conductance states varies with nonlamellar tendency of bilayer phospholipids. Biophys. J. 65, 23–27 (1993).

    Google Scholar 

  47. Ketchem, R. R., Roux, B. and Cross, T. A.: High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure 5, 1655–1669 (1997).

    Google Scholar 

  48. Killian, J. A. and Nyholm, T. K.: Peptides in lipidbilayers: the power of simple models. Curr. Opin. Struct. Biol. 16, 473–479 (2006).

    Google Scholar 

  49. Killian, J. A., Salemink, I., de Planque, M. R., Lindblom, G., Koeppe, R.E. II, Greathouse, D. V.: Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by trans-membrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans. Biochemistry 35, 1037–1045 (1996).

    Google Scholar 

  50. Kirk, G. L. and Gruner, S. M.: Lyotropic effects of alkanes and headgroup composition on the \(l_{\alpha }\) -\(H_{II}\) lipid liquid crystal phase transition : hydrocarbon packing versus intrinsic curvature. J. Phys. 46, 761–769 (1985).

    Google Scholar 

  51. Koeppe, R.E. II, Providence, L. L., Greathouse, D. V., Heitz, F., Trudelle, Y., Purdie, N. and Andersen, O.S.: On the helix sense of gramicidin A single channel. Proteins Struct., Funct., Genet. 12, 49–62 (1992).

    Google Scholar 

  52. Latorre, M. and Alvarez, O.: Voltage-dependent channels in planar lipidbilayer membranes. Physiol. Rev. 61, 77–150 (1981).

    Google Scholar 

  53. Lee, M. T., Hung, W. C., Chen, F. Y. and Huang, H. W.: Many-Body Effect of Antimicrobial Peptides: On the Correlation Between Lipid’s Spontaneous Curvature and Pore Formation. Biophys. J. 89, 4006–4016 (2005).

    Google Scholar 

  54. Lee, M.C., Duan, Y.: Distinguish protein decoys by using a scoring function based on a new Amber force field, short molecular dynamics simulations, and the generalized Born solvent model. Proteins 55, 620–634 (2004).

    Google Scholar 

  55. Lewis, B.A. and Engelman, D.M.: Lipidbilayer thickness varies linearly with acyl chain length in fluid phosphatidylcholine vesicles. J. Mol. Biol. 166, 211–217 (1983).

    Google Scholar 

  56. Lundbæk, J. A., Birn, P. H. A. J., Søgaard, R., Nielsen, C., Girshman, J., Bruno, M. J., Tape, S. E., Egebjerg, J., Greathouse, D. V., Mattice, G. L., Koeppe, R.E. II and Andersen, O.S.: Regulation of sodium channel function by bilayer elasticity. The importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J. Gen. Physiol. 123, 599–621 (2004).

    Google Scholar 

  57. Lundbæk, J. A.: Lipid Bilayer - mediated Regulation of Ion Channel Function by Amphiphilic drugs. J. of Gen. Physiol. 131, 421–429 (2008).

    Google Scholar 

  58. Lundbæk, J.A. and Andersen, O.S.: Spring constants for channel-induced lipidbilayer deformations. Estimates using gramicidin channels. Biophys. J. 76, 889–895 (1999).

    Google Scholar 

  59. Ly, H. V. and Longo, M. L.: The Influence of Short-Chain Alcohols on Interfacial Tension, Mechanical Properties, Area/Molecule, and Permeability of fluid Lipid Bilayers. Biophys. J. 87, 1013–1033 (2004).

    Google Scholar 

  60. McLaughlin, S.: Electrostatic Potentials at Membrane-Solution Interfaces. Curr. Top. Membr. Transp. 9, 71–98 (1977).

    Google Scholar 

  61. Mengistu, D. H. and May, S.: Debye-Hückel theory of mixed charged-zwitterionic lipid layers. Eur. Phys. J. E 26, 251–260 (2008).

    Google Scholar 

  62. Miloshevsky, G. V. and Jordan, P. C.: Gating gramicidin channels in lipidbilayers: reaction coordinates and the mechanism of dissociation. Biophys. J. 86, 92–104 (2004).

    Google Scholar 

  63. Mobashery, N., Nielsen, C. and Andersen, O.S.: The conformational preference of gramicidin channels is a function of lipidbilayer thickness. FEBS Lett. 412, 15–20 (1997).

    Article  Google Scholar 

  64. Mtheitsen, O. G. and Bloom, M.: Mattress model of lipid-protein interactions in membranes. Biophys. J. 46, 141–153 (1984).

    Google Scholar 

  65. Mtheitsen, O. G. and Andersen, O.S.: In Biol. Skr. Dan. Vid. (Selsk Munksgaard, Copenhagen: B) (1998).

    Google Scholar 

  66. Muller, R. U. and Finkelstein, A.: The Effect of Surface Charge on the Voltage-Dependent Conductance Induced in Thin Lipid Membranes by Monazomycin. J. Gen. Physiol. 60, 285–306 (1972).

    Google Scholar 

  67. Nielsen, C., Goulian, M. and Andersen, O.S.: Biophys, Energetics of inclusion-induced bilayer deformations, Biophys. J. 74, 1966–1983 (1998).

    Google Scholar 

  68. Nielsen, C. and Andersen, O.S.: Inclusion-induced bilayer deformations: effects of monolayer equilibrium curvature. Biophys. J. 79, 2583–2604 (2000).

    Google Scholar 

  69. O’Connell, A. M., Koeppe, R.E. II and Andersen, O.S.: Kinetics of gramicidin channel formation in lipidbilayers: trans-membrane monomer association. Science 250, 1256–1259 (1990).

    Google Scholar 

  70. Odijk, T.: Polyelectrolytes near the rod limit. J. Plym. Sci., Polym. Phys. Ed. 15, 477–483 (1977).

    Google Scholar 

  71. Orbach, E. and Finkelstein, A.: The nonelectrolyte permeability of planar lipidbilayer membranes. J. Gen. Physiol. 75, 427–436 (1980).

    Google Scholar 

  72. Parsegian, A.: Energy of an Ion crossing a low dielectric membrane: solutions to fthe relevant electrostatic problems. Nature 221, 844–846 (1969).

    Google Scholar 

  73. Perozo, E., Cortes, D.M. and Cuello, L.G.: Structural Rearrangements Underlying \(K^+\)- Channel Activation Gating. Science 285, 73–78 (1999).

    Google Scholar 

  74. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. and Martinac, B.: Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418, 942–948 (2002).

    Google Scholar 

  75. Ring, A.: Gramicidin channel-induced lipidmembrane deformation energy: influence of chain length and boundary conditions. Biochim. Biophys. Acta 1278, 147–159 (1996).

    Google Scholar 

  76. Rostovtseva, T. K., Aguilella, V. M., Vodayanoy, I., Bezrukov, S. M. and Parsegian, A.: Membrane surface-charge titration probed by gramicidin A channel conductance. Biophys. J. 75, 1783–1792 (1998).

    Google Scholar 

  77. Sackmann, E.: In Biological Membranes. Chapman, D. (ed.) (London: Academic), p 105 (1984).

    Google Scholar 

  78. Santore, M. M., Discher, D. E., Won, Y-Y., Bates, F. S. and Hammer, D. A.: Effect of Surfactant on Unilamellar Polymeric Vesicles: Altered Membrane Properties and Stability in the Limit of Weak Surfactant Partitioning. Langmuir 18, 7299–7308 (2002).

    Google Scholar 

  79. Sawyer, D. B., Koeppe, R.E. II and Andersen, O.S.: Induction of conductance heterogeneity in gramicidin channels. Biochemistry 28, 6571–6583 (1989).

    Google Scholar 

  80. Schatzberg, P. J.: Polymer Sci. Part C 10, 87–92 (1965).

    Google Scholar 

  81. Seddon, J. M.: Structure of the inverted hexagonal (\(H_{II}\)) phase, and non-lamellar phase transitions of lipids. Biochim. Biophys. Acta 1031, 1–69 (1990).

    Google Scholar 

  82. Simon, S.A., McIntosh, T.J. and Latorre, R.: Influence of cholesterol on water permeation into bilayers. Science 216, 65–67 (1982).

    Google Scholar 

  83. Singer, S.J. and Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    Google Scholar 

  84. Szabo, G., Eisenman, G. and Ciani, S.: The effects of the macrotetralide actin antibiotics on the electrical properties of phospholipid bilayer membranes. J. Membr. Biol. 1, 346 (1969).

    Google Scholar 

  85. Tate, M. W., Eikenberry, E. F., Turner, D. C., Shyamsunder, E. and Gruner, S. M.: Non bilayer phases of membrane lipids. Chem. Phys. Lipids 57, 147–164 (1991).

    Google Scholar 

  86. Teh, C.K., Tuszynski, J. and Weisman, F.L.: The decay of carbon luminescence in liquid-encapsulated czochralski-grown semi-insulating GaAs. J. Mater. Res. 5, 365–371 (1990).

    Google Scholar 

  87. Townsley, L. E., Tucker, W. A., Sham, S. and Hinton, J. F.: Structures of gramicidins A, B, and C incorporated into sodium dodecyl sulfate micelles. Biochemistry 40, 11676–11686 (2001).

    Google Scholar 

  88. Toyoshima, C. and Mizutani, T.: Crystal structure of the calcium pump with a bound ATP analogue. Nature 430, 529–535 (2004).

    Google Scholar 

  89. Unwin, P.N.T. and Ennis, P. D.: Two configurations of a channel-forming membrane protein. Nature 307, 609–613 (1984).

    Google Scholar 

  90. Wallace, B. A., Veatch, W. R. and Blout, E. R.: Conformation of gramicidin A in phospholipid vesicles: circular dichroism studies of effects of ion binding, chemical modification, and lipid structure. Biochemistry 20, 5754–5760 (1981).

    Google Scholar 

  91. Walter, A. and Gutknecht, J.: Monocarboxylic acid permeation through lipidbilayer membranes. J. Membrane Biol. 77, 255–264 (1984).

    Google Scholar 

  92. Woolf, T.B. and Roux, B.: Molecular dynamics simulation of the gramicidin channel in a phospholipid bilayer. Proc. Natl. Acad. Sci. USA 91, 11631–11635 (1994).

    Google Scholar 

  93. Wu, Y., He, K., Ludtke, S. J. and Huang, H. W.: X-ray diffraction study of lipidbilayer membranes interacting with amphiphilic helical peptides: diphytanoyl phosphatidylcholine with alamethicin at low concentrations. Biophys. J. 68, 2361–2369 (1995).

    Google Scholar 

  94. Zhou, Y. and Raphael, R. M.: Effect of Salicylate on the Elasticity, Bending Stiffness, and Strength of SOPC Membranes. Biophys. J. 89, 1789–1801 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ashrafuzzaman .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashrafuzzaman, M., Tuszynski, J. (2012). Lipid Bilayer-Membrane Protein Coupling. In: Membrane Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16105-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16105-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16104-9

  • Online ISBN: 978-3-642-16105-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics