Skip to main content

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 77))

  • 1299 Accesses

Abstract

High-dimensional integrals appear in various mathematical models from physics, chemistry or finance. The large number of dimensions arises, e.g., from small time steps in time discretizations and/or a large number of state variables. In many cases the arising integrals can not be calculated analytically and numerical methods must be applied. Here, one of the key prerequisites for a successful application is that the curse of dimension [7] can be avoided at least to some extent. The curse of dimension states that the cost to compute an approximation with a prescribed accuracy ε depends exponentially on the dimension d of the problem. It is one of the main obstacles for the numerical treatment of high dimensional problems, see, e.g., [57].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellmann, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press (1961)

    Google Scholar 

  2. Bernsten, J., Espelid, T., Genz, A.: Algorithm 698: DCUHRE – an adaptive multidimensional integration routine for a vector of integrals. ACM Transactions on Mathematical Software 17, 452–456 (1991)

    Article  Google Scholar 

  3. Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing. J. Economic Dynamics and Control 21(8-9), 1267–1321 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cools, R.: Monomial cubature rules since “Stroud”: A compilation–part 2. J. Comput. Appl. Math. 112, 1–2 (1999)

    Article  MATH  Google Scholar 

  5. Cools, R.: An encyclopedia of cubature formulas. J. Complexity 19, 445–453 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cools, R., Rabinowitz, P.: Monomial cubature rules since “Stroud”: A compilation. J. Comput. Appl. Math. 48, 309–326 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davis, P., Rabinowitz, P.: Methods of Numerical Integration. Academic Press (1984)

    Google Scholar 

  8. Dick, J.: Walsh spaces containing smooth functions and quasi-Monte Carlo rules of arbitrary high order. SIAM J. Numer. Anal. 46(3), 1519–1553 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Genz, A.: Fully symmetric interpolatory rules for multiple integrals. SIAM J. Numer. Anal. 23, 1273–1283 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Genz, A., Keister, B.: Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight. J. Comp. Appl. Math. 71, 299–309 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Genz, A., Malik, A.: An adaptive algorithm for numerical integration over an n-dimensional rectangular region. J. Comp. Appl. Math. 6, 295–302 (1980)

    Article  MATH  Google Scholar 

  12. Gerstner, T.: Sparse grid quadrature methods for computational finance. Habilitation, University of Bonn (2007)

    Google Scholar 

  13. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numerical Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gerstner, T., Griebel, M.: Dimension–adaptive tensor–product quadrature. Computing 71(1), 65–87 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer (2003)

    Google Scholar 

  16. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems. In: L. Pardo, A. Pinkus, E. Suli, M. Todd (eds.) Foundations of Computational Mathematics (FoCM05), Santander, pp. 106–161. Cambridge University Press (2006)

    Google Scholar 

  17. Griebel, M., Holtz, M.: Dimension-wise integration of high-dimensional functions with applications to finance. J. Complexity (2010). Appeared online.

    Google Scholar 

  18. Hahn, T.: Cuba - a library for multidimensional numerical integration. Computer Physics Communications 168, 78–95 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Mathematics of Computation 67(221), 299–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hinrichs, A., Novak, E.: Cubature formulas for symmetric measures in higher dimensions with few points. Math. of Comp. 76, 1357–1372 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jäckel, P.: Monte-Carlo Methods in Finance. John Wiley & Sons (2002)

    Google Scholar 

  22. Judd, K.: Numerical Methods in Economics. MIT Press, Cambridge (1998)

    Google Scholar 

  23. Kalos, M., Whitlock, P.: Monte Carlo Methods. John Wiley & Sons (1986)

    Google Scholar 

  24. Kuo, F.Y., Sloan, I.: Lifting the curse of dimensionality. Notices of the American Mathematical Society 52(11), 1320–1328 (2005)

    MATH  MathSciNet  Google Scholar 

  25. L’Ecuyer, P., Lemieux, C.: Variance reduction via lattice rules. Management Science 46(9), 1214–1235 (2000)

    Article  Google Scholar 

  26. Lemieux, C.: Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer (2009)

    Google Scholar 

  27. Lu, J., Darmofal, D.: Higher-dimensional integration with Gaussian weight for applications in probabilistic design. SIAM J. Sci. Comput. 26, 613–624 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moro, B.: The full Monte. RISK 8(2) (1995)

    Google Scholar 

  29. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Google Scholar 

  30. Novak, E., Woźniakowski, H.: When are integration and discrepancy tractable? In: R.A. DeVore, A. Iserles, E. Süli (eds.) Foundations of Computational Mathematics (FoCM99), Oxford, pp. 211–266. Cambridge University Press (2001)

    Google Scholar 

  31. Novak, E., Woźniakowski, H.: L 2 discrepancy and multivariate integration. In: W. Chen, W. Gowers, H. Halberstam, W. Schmidt, R. Vaughan (eds.) Analytic Number Theory: Essays in Honour of Klaus Roth, pp. 359–388. Cambridge University Press (2009)

    Google Scholar 

  32. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel hilbert spaces. Math. Comp. 75, 903–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Petras, K.: Smolyak cubature of given polynomial degree with few nodes for increasing dimension. Numer. Math. 93(4), 729–753 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)

    Google Scholar 

  35. Sloan, I., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, New York (1994)

    Google Scholar 

  36. Sloan, I., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high-dimensional integrals? J. Complexity 14, 1–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  37. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40, 1650 – 1665 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  38. Stroud, A.: Approximate Calculation of Multiple Integrals. Prentice-Hall (1971)

    Google Scholar 

  39. Wang, X., Sloan, I.: Why are high-dimensional finance problems often of low effective dimension? SIAM J. Sci. Comput. 27(1), 159 – 183 (2005)

    MATH  MathSciNet  Google Scholar 

  40. Wasilkowski, G., Kuo, F., Waterhouse, B.: Randomly shifted lattice rules for unbounded integrands. J. Complexity 22(5), 630–651 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  41. Waterhouse, B.: New developments in the construction of lattice rules. Ph.D. thesis, University of New South Wales (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Holtz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Holtz, M. (2011). Dimension-wise Quadrature. In: Sparse Grid Quadrature in High Dimensions with Applications in Finance and Insurance. Lecture Notes in Computational Science and Engineering, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16004-2_3

Download citation

Publish with us

Policies and ethics