Skip to main content

Molecular Recognition Force Microscopy: From Molecular Bonds to Complex Energy Landscapes

  • Chapter
  • First Online:
Nanotribology and Nanomechanics I

Abstract

Atomic force microscopy (AFM), atomic force microscopy (AFM) developed in the late 1980s to explore atomic details on hard material surfaces, has evolved into a method capable of imaging fine structural details of biological samples. Its particular advantage in biology is that measurements can be carried out in aqueous and physiological environments, which opens the possibility to study the dynamics of biological processes in vivo. The additional potential of the AFM to measure ultralow forces at high lateral resolution has paved the way for measuring inter- and intramolecular forces of biomolecules on the single-molecule level. Molecular recognition studies using AFM open the possibility to detect specific ligand–receptor interaction forces and to observe molecular recognition of a single ligand–receptor pair. Applications include biotin–avidin, antibody–antigen, nitrilotriacetate (NTA)–hexahistidine 6, and cellular proteins, either isolated or in cell membranes.

The general strategy is to bind ligands to AFM tips and receptors to probe surfaces (or vice versa). In a force–distance cycle, the tip is first approached towards the surface, whereupon a single receptor–ligand complex is formed due to the specific ligand receptor recognition. During subsequent tip–surface retraction a temporarily increasing force is exerted on the ligand–receptor connection, thus reducing its lifetime until the interaction bond breaks at a critical (unbinding) force. Such experiments allow for estimation of affinity, rate constants, and structural data of the binding pocket. Comparing them with values obtained from ensemble-average techniques and binding energies is of particular interest. The dependences of unbinding force on the rate of load increase exerted on the receptor–ligand bond receptor–ligand bond reveal details of the molecular dynamics of the recognition process and energy landscapes. Similar experimental strategies have also been used for studying intramolecular force properties of polymers and unfolding–refolding kinetics of filamentous proteins. Recognition recognition imaging imaging, developed by combing dynamic force microscopy force microscopy with force spectroscopy, allows for localization of receptor sites on surfaces with nanometer positional accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

BFP:

biomembrane force probe

BSA:

bovine serum albumin

DC:

direct-current

DFM:

dynamic force microscopy

DFS:

dynamic force spectroscopy

DNA:

deoxyribonucleic acid

DTSSP:

3,3′-dithio-bis(sulfosuccinimidylproprionate)

FS:

force spectroscopy

GDP:

guanosine diphosphate

GTP:

guanosine triphosphate

HUVEC:

human umbilical venous endothelial cell

ICAM-1:

intercellular adhesion molecules 1

ICAM-2:

intercellular adhesion molecules 2

IgG:

immunoglobulin G

LFA-1:

leukocyte function-associated antigen-1

MRFM:

magnetic resonance force microscopy

MRFM:

molecular recognition force microscopy

NHS:

N-hydroxysuccinimidyl

NTA:

nitrilotriacetate

OT:

optical tweezers

PDP:

2-pyridyldithiopropionyl

PDP:

pyridyldithiopropionate

PEG:

polyethylene glycol

PSGL-1:

P-selectin glycoprotein ligand-1

RGD:

arginine–glycine–aspartic

SATP:

(S-acetylthio)propionate

SFA:

surface forces apparatus

SFD:

shear flow detachment

TREC:

topography and recognition

References

  1. G.U. Lee, D.A. Kidwell, R.J. Colton, Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 10, 354–357 (1994).

    Article  Google Scholar 

  2. E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between individual ligand receptor pairs. Science 264, 415–417 (1994).

    Article  Google Scholar 

  3. P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93, 3477–3481 (1996).

    Article  Google Scholar 

  4. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  Google Scholar 

  5. M. Grandbois, W. Dettmann, M. Benoit, H.E. Gaub, How strong is a covalent bond. Science 283, 1727–1730 (1999).

    Article  Google Scholar 

  6. T. Boland, B.D. Ratner, Direct measurement of hydrogen bonding in DNA nucleotide bases by atomic force microscopy. Proc. Natl. Acad. Sci. USA 92, 5297–5301 (1995).

    Article  Google Scholar 

  7. P. Wagner, M. Hegner, P. Kernen, F. Zaugg, G. Semenza, Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self assembled monolayers for scanning probe microscopy. Biophys. J. 70, 2052–2066 (1996).

    Article  Google Scholar 

  8. U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.-J. Güntherodt, G.M. Misevic, Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science 267, 1173–1175 (1995).

    Article  Google Scholar 

  9. U. Dammer, M. Hegner, D. Anselmetti, P. Wagner, M. Dreier, W. Huber, H.-J. Güntherodt, Specific antigen/antibody interactions measured by force microscopy. Biophys. J. 70, 2437–2441 (1996).

    Article  Google Scholar 

  10. Y. Harada, M. Kuroda, A. Ishida, Specific and quantized antibody-antigen interaction by atomic force microscopy. Langmuir 16, 708–715 (2000).

    Article  Google Scholar 

  11. P. Hinterdorfer, K. Schilcher, W. Baumgartner, H.J. Gruber, H. Schindler, A mechanistic study of the dissociation of individual antibody-antigen pairs by atomic force microscopy. Nanobiology 4, 39–50 (1998).

    Google Scholar 

  12. S. Allen, X. Chen, J. Davies, M.C. Davies, A.C. Dawkes, J.C. Edwards, C.J. Roberts, J. Sefton, S.J.B. Tendler, P.M. Williams, Spatial mapping of specific molecular recognition sites by atomic force microscopy. Biochemistry 36, 7457–7463 (1997).

    Article  Google Scholar 

  13. R. Ros, F. Schwesinger, D. Anselmetti, M. Kubon, R. Schäfer, A. Plückthun, L. Tiefenauer, Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc. Natl. Acad. Sci. USA 95, 7402–7405 (1998).

    Article  Google Scholar 

  14. T. Strunz, K. Oroszlan, R. Schäfer, H.-J. Güntherodt, Dynamic force spectroscopy of single DNA molecules. Proc. Natl. Acad. Sci. USA 96, 11277–11282 (1999).

    Article  Google Scholar 

  15. A. Ebner, P. Hinterdorfer, H.J. Gruber, Comparison of different aminofunctionalization strategies for attachment of single antibodies to AFM cantilevers. Ultramicroscopy 107, 922–927 (2007).

    Article  Google Scholar 

  16. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalyzed nanotubes as nanometre-sized probes in chemistry and biology. Nature 394, 52–55 (1998).

    Article  Google Scholar 

  17. P. Hinterdorfer, F. Kienberger, A. Raab, H.J. Gruber, W. Baumgartner, G. Kada, C. Riener, S. Wielert-Badt, C. Borken, H. Schindler, Poly(ethylene glycol): An ideal spacer for molecular recognition force microscopy/spectroscopy. Single Mol. 1, 99–103 (2000).

    Article  Google Scholar 

  18. T. Haselgrübler, A. Amerstorfer, H. Schindler, H.J. Gruber, Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconjug. Chem. 6, 242–248 (1995).

    Article  Google Scholar 

  19. A.S.M. Kamruzzahan, A. Ebner, L. Wildling, F. Kienberger, C.K. Riener, C.D. Hahn, P.D. Pollheimer, P. Winklehner, M. Holzl, B. Lackner, D.M. Schorkl, P. Hinterdorfer, H.J. Gruber, Antibody linking to atomic force microscope tips via disulfide bond formation. Bioconjug. Chem. 17(6), 1473–1481 (2006).

    Article  Google Scholar 

  20. A. Raab, W. Han, D. Badt, S.J. Smith-Gill, S.M. Lindsay, H. Schindler, P. Hinterdorfer, Antibody recognition imaging by force microscopy. Nat. Biotech. 17, 902–905 (1999).

    Google Scholar 

  21. G.U. Lee, A.C. Chrisey, J.C. Colton, Direct measurement of the forces between complementary strands of DNA. Science 266, 771–773 (1994).

    Article  Google Scholar 

  22. M. Conti, G. Falini, B. Samori, How strong is the coordination bond between a histidine tag and Ni-nitriloacetate? An experiment of mechanochemistry on single molecules. Angew. Chem. 112, 221–224 (2000).

    Article  Google Scholar 

  23. F. Kienberger, G. Kada, H.J. Gruber, V.P. Pastushenko, C. Riener, M. Trieb, H.-G. Knaus, H. Schindler, P. Hinterdorfer, Recognition force spectroscopy studies of the NTA-His6 bond. Single Mol. 1, 59–65 (2000).

    Article  Google Scholar 

  24. L. Schmitt, M. Ludwig, H.E. Gaub, R. Tampe, A metal-chelating microscopy tip as a new toolbox for single-molecule experiments by atomic force microscopy. Biophys. J. 78, 3275–3285 (2000).

    Article  Google Scholar 

  25. S. Lata, A. Reichel, R. Brock, R. Tampe, J. Piehler, High-affinity adaptors for switchable recognition of histidine-tagged proteins. J. Am. Chem. Soc. 127, 10205–10215 (2005).

    Article  Google Scholar 

  26. A. Ebner, L. Wildling, R. Zhu, C. Rankl, T. Haselgrübler, P. Hinterdorfer, H.J. Gruber, Functionalization of probe tips and supports for single molecule force microscopy. Top. Curr. Chem. 285, 29–76 (2008).

    Article  Google Scholar 

  27. C. Yuan, A. Chen, P. Kolb, V.T. Moy, Energy landscape of avidin-biotin complexes measured burey atomic force microscopy. Biochemistry 39, 10219–10223 (2000).

    Article  Google Scholar 

  28. W. Han, S.M. Lindsay, M. Dlakic, R.E. Harrington, Kinked DNA. Nature 386, 563 (1997).

    Article  Google Scholar 

  29. G. Kada, L. Blaney, L.H. Jeyakumar, F. Kienberger, V.P. Pastushenko, S. Fleischer, H. Schindler, F.A. Lai, P. Hinterdorfer, Recognition force microscopy/spectroscopy of ion channels: Applications to the skeletal muscle Ca2+ release channel (RYR1). Ultramicroscopy 86, 129–137 (2001).

    Article  Google Scholar 

  30. D.J. Müller, W. Baumeister, A. Engel, Controlled unzipping of a bacterial surface layer atomic force microscopy. Proc. Natl. Acad. Sci. USA 96, 13170–13174 (1999).

    Article  Google Scholar 

  31. F. Oesterhelt, D. Oesterhelt, M. Pfeiffer, A. Engle, H.E. Gaub, D.J. Müller, Unfolding pathways of individual bacteriorhodopsins. Science 288, 143–146 (2000).

    Article  Google Scholar 

  32. E. Kiss, C.-G. Gölander, Chemical derivatization of muscovite mica surfaces. Colloids Surf. 49, 335–342 (1990).

    Article  Google Scholar 

  33. S. Karrasch, M. Dolder, F. Schabert, J. Ramsden, A. Engel, Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys. J. 65, 2437–2446 (1993).

    Article  Google Scholar 

  34. N.H. Thomson, B.L. Smith, N. Almqvist, L. Schmitt, M. Kashlev, E.T. Kool, P.K. Hansma, Oriented, active escherichia coli RNA polymerase: An atomic force microscopy study. Biophys. J. 76, 1024–1033 (1999).

    Article  Google Scholar 

  35. G. Kada, C.K. Riener, P. Hinterdorfer, F. Kienberger, C.M. Stroh, H.J. Gruber, Dithio-phospholipids for biospecific immobilization of proteins on gold surfaces. Single Mol. 3, 119–125 (2002).

    Article  Google Scholar 

  36. C. LeGrimellec, E. Lesniewska, M.C. Giocondi, E. Finot, V. Vie, J.P. Goudonnet, Imaging of the surface of living cells by low-force contact-mode atomic force microscopy. Biophys. J. 75(2), 695–703 (1998).

    Article  Google Scholar 

  37. K. Schilcher, P. Hinterdorfer, H.J. Gruber, H. Schindler, A non-invasive method for the tight anchoring of cells for scanning force microscopy. Cell. Biol. Int. 21, 769–778 (1997).

    Article  Google Scholar 

  38. S. Wielert-Badt, P. Hinterdorfer, H.J. Gruber, J.-T. Lin, D. Badt, H. Schindler, R.K.-H. Kinne, Single molecule recognition of protein binding epitopes in brush border membranes by force microscopy. Biophys. J. 82, 2767–2774 (2002).

    Article  Google Scholar 

  39. P. Bongrand, C. Capo, J.-L. Mege, A.-M. Benoliel, Use of hydrodynamic flows to study cell adhesion, In Physical Basis of Cell Adhesion, ed. by P. Bongrand (CRC Press, Boca Raton, 1988) pp. 125–156.

    Google Scholar 

  40. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic, New York, 1991).

    Google Scholar 

  41. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor-ligand bonds explored by dynamic force spectroscopy. Nature 397, 50–53 (1999).

    Article  Google Scholar 

  42. A. Askin, Optical trapping and manipulation of neutral particles using lasers. Proc. Natl. Acad. Sci. USA 94, 4853–4860 (1997).

    Article  Google Scholar 

  43. K.C. Neuman, S.M. Block, Optical trapping. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  Google Scholar 

  44. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Direct observation of kinesin stepping by optical trapping interferometry. Nature 365, 721–727 (1993).

    Article  Google Scholar 

  45. S.M. Block, C.L. Asbury, J.W. Shaevitz, M.J. Lang, Probing the kinesin reaction cycle with a 2D optical force clamp. Proc. Natl. Acad. Sci. USA 100, 2351–2356 (2003).

    Article  Google Scholar 

  46. A.E.M. Clemen, M. Vilfan, J. Jaud, J. Zhang, M. Barmann, M. Rief, Force-dependent stepping kinetics of myosin-V. Biophys. J. 88, 4402–4410 (2005).

    Article  Google Scholar 

  47. S. Smith, Y. Cui, C. Bustamante, Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  Google Scholar 

  48. M.S.Z. Kellermayer, S.B. Smith, H.L. Granzier, C. Bustamante, Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Sience 276, 1112–1216 (1997).

    Article  Google Scholar 

  49. T.R. Strick, J.F. Allemend, D. Bensimon, A. Bensimon, V. Croquette, The elasticity of a single supercoiled DNA molecule. Biophys. J. 271, 1835–1837 (1996).

    Google Scholar 

  50. T. Lionnet, D. Joubaud, R. Lavery, D. Bensimon, V. Croquette, Wringing out DNA. Phys. Rev. Lett. 96, 178102 (2006).

    Article  Google Scholar 

  51. F. Kienberger, V.P. Pastushenko, G. Kada, H.J. Gruber, C. Riener, H. Schindler, P. Hinterdorfer, Static and dynamical properties of single poly(ethylene glycol) molecules investigated by force spectroscopy. Single Mol. 1, 123–128 (2000).

    Article  Google Scholar 

  52. S. Liang, D. Medich, D.M. Czajkowsky, S. Sheng, J.-Y. Yuan, Z. Shao, Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces. Ultramicroscopy 84, 119–125 (2000).

    Article  Google Scholar 

  53. M.B. Viani, T.E. Schäffer, A. Chand, M. Rief, H.E. Gaub, P.K. Hansma, Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 86, 2258–2262 (1999).

    Article  Google Scholar 

  54. T. Strunz, K. Oroszlan, I. Schumakovitch, H.-J. Güntherodt, M. Hegner, Model energy landscapes and the force-induced dissociation of ligand-receptor bonds. Biophys. J. 79, 1206–1212 (2000).

    Article  Google Scholar 

  55. H. Grubmüller, B. Heymann, P. Tavan, Ligand binding: Molecular mechanics calculation of the streptavidin-biotin rupture force. Science 271, 997–999 (1996).

    Article  Google Scholar 

  56. G.I. Bell, Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    Article  Google Scholar 

  57. E. Evans, K. Ritchie, Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997).

    Article  Google Scholar 

  58. E. Evans, K. Ritchie, Strength of a weak bondconnecting flexible polymer chains. Biophys. J. 76, 2439–2447 (1999).

    Article  Google Scholar 

  59. J. Fritz, A.G. Katopidis, F. Kolbinger, D. Anselmetti, Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95, 12283–12288 (1998).

    Article  Google Scholar 

  60. T. Auletta, M.R. de Jong, A. Mulder, F.C.J.M. van Veggel, J. Huskens, D.N. Reinhoudt, S. Zou, S. Zapotocny, H. Schönherr, G.J. Vancso, L. Kuipers, β-cyclodextrin host-guest complexes probed under thermodynamic equilibrium: Thermodynamics and force spectroscopy. J. Am. Chem. Soc. 126, 1577–1584 (2004).

    Article  Google Scholar 

  61. V.T. Moy, E.-L. Florin, H.E. Gaub, Adhesive forces between ligand and receptor measured by AFM. Science 266, 257–259 (1994).

    Article  Google Scholar 

  62. A. Chilkoti, T. Boland, B. Ratner, P.S. Stayton, The relationship between ligand-binding thermodynamics and protein-ligand interaction forces measured by atomic force microscopy. Biophys. J. 69, 2125–2130 (1995).

    Article  Google Scholar 

  63. I. Schumakovitch, W. Grange, T. Strunz, P. Bertoncini, H.-J. Güntherodt, M. Hegner, Temperature dependence of unbinding forces between complementary DNA strands. Biophys. J. 82, 517–521 (2002).

    Article  Google Scholar 

  64. W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn, Cadherin interaction probed by atomic force microscopy. Proc. Natl. Acad. Sci. USA 8, 4005–4010 (2000).

    Article  Google Scholar 

  65. F. Schwesinger, R. Ros, T. Strunz, D. Anselmetti, H.-J. Güntherodt, A. Honegger, L. Jermutus, L. Tiefenauer, A. Plückthun, Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc. Natl. Acad. Sci. USA 29, 9972–9977 (2000).

    Article  Google Scholar 

  66. A.F. Oberhauser, P.K. Hansma, M. Carrion-Vazquez, J.M. Fernandez, Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl. Acad. Sci. USA 16, 468–472 (2000).

    Google Scholar 

  67. S. Izraelev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J. 72, 1568–1581 (1997).

    Article  Google Scholar 

  68. M. Rief, F. Oesterhelt, B. Heyman, H.E. Gaub, Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275, 1295–1297 (1997).

    Article  Google Scholar 

  69. M. Schlierf, M. Rief, Single-molecule unfolding force distributions reveal a funnel-shaped energy landscape. Biophys. J. 90, L33 (2006).

    Article  Google Scholar 

  70. G. Neuert, C. Albrecht, E. Pamir, H.D. Gaub, Dynamic force spectroscopy of the digoxigenin-antibody complex. FEBS Letters 580, 505–509 (2006).

    Article  Google Scholar 

  71. O.K. Dudko, A.E. Filippov, J. Klafter, M. Urback, Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. Proc. Natl. Acad. Sci. USA 100, 11378–11381 (2003).

    Article  Google Scholar 

  72. M. Evstigneev, P. Reimann, Dynamic force spectroscopy: Optimized data analysis. Phys. Rev. E 68, 045103(R) (2003).

    Google Scholar 

  73. E. Evans, E. Leung, D. Hammer, S. Simon, Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc. Natl. Acad. Sci. USA 98, 3784–3789 (2001).

    Article  Google Scholar 

  74. X. Zhang, E. Woijcikiewicz, V.T. Moy, Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys. J. 83, 2270–2279 (2002).

    Article  Google Scholar 

  75. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, Z. Zhu, Direct observation of catch bonds involving cell adhesion molecules. Nature 423, 190–193 (2003).

    Article  Google Scholar 

  76. B. Heymann, H. Grubmüller, Molecular dynamics force probe simulations of antibody/antigen unbinding: Entropic control and non additivity of unbinding forces. Biophys. J. 81, 1295–1313 (2001).

    Article  Google Scholar 

  77. M. Odorico, J.M. Teulon, T. Bessou, C. Vidaud, L. Bellanger, S.W. Chen, E. Quemeneur, P. Parot, J.L. Pellequer, Energy landscape of chelated uranyl: Antibody interactions by dynamic force spectroscopy. Biophys. J. 93, 645 (2007).

    Article  Google Scholar 

  78. R. Nevo, C. Stroh, F. Kienberger, D. Kaftan, V. Brumfeld, M. Elbaum, Z. Reich, P. Hinterdorfer, A molecular switch between two bound states in the RanGTP-importinβ1 interaction. Nat. Struct. Mol. Biol. 10, 553–557 (2003).

    Article  Google Scholar 

  79. R. Nevo, V. Brumfeld, M. Elbaum, P. Hinterdorfer, Z. Reich, Direct discrimination between models of protein activation by single-molecule force measurements. Biophys. J. 87, 2630–2634 (2004).

    Article  Google Scholar 

  80. R. Zwanzig, Diffusion in a rough potential. Proc. Natl. Acad. Sci. USA 85, 2029–2030 (1988).

    Article  MathSciNet  Google Scholar 

  81. C.B. Hyeon, D. Thirumalai, Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Proc. Natl. Acad. Sci. USA 100, 10249–10253 (2003).

    Article  Google Scholar 

  82. R. Nevo, V. Brumfeld, R. Kapon, P. Hinterdorfer, Z. Reich, Direct measurement of protein energy landscape roughness. EMBO Reports 6, 482–486 (2005).

    Article  Google Scholar 

  83. F. Rico, V.T. Moy, Energy landscape roughness of the streptavidin-biotin interaction. J. Mol. Recognit. 20, 495–501 (2007).

    Article  Google Scholar 

  84. P.P. Lehenkari, M.A. Horton, Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem. Biophys. Res. Commun. 259, 645–650 (1999).

    Article  Google Scholar 

  85. A. Chen, V.T. Moy, Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion. Biophys. J. 78, 2814–2820 (2000).

    Article  Google Scholar 

  86. G. Pfister, C.M. Stroh, H. Perschinka, M. Kind, M. Knoflach, P. Hinterdorfer, G. Wick, Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J. Cell Sci. 118, 1587–1594 (2005).

    Article  Google Scholar 

  87. T. Puntheeranurak, L. Wildling, H.J. Gruber, R.K.H. Kinne, P. Hinterdorfer, Ligands on the string: single molecule studies on the interaction of antibodies and substrates with the surface of the Na+-glucose cotransporter SGLT1 in living cells. J. Cell Sci. 119, 2960–2967 (2006).

    Article  Google Scholar 

  88. E.P. Wojcikiewicz, M.H. Abdulreda, X. Zhang, V.T. Moy, Force spectroscopy of LFA-1 and its ligands, ICAM-1 and ICAM-2. Biomacromolecules 7, 3188 (2006).

    Article  Google Scholar 

  89. M. Ludwig, W. Dettmann, H.E. Gaub, Atomic force microscopy imaging contrast based on molecuar recognition. Biophys. J. 72, 445–448 (1997).

    Article  Google Scholar 

  90. P.P. Lehenkari, G.T. Charras, G.T. Nykänen, M.A. Horton, Adapting force microscopy for cell biology. Ultramicroscopy 82, 289–295 (2000).

    Article  Google Scholar 

  91. N. Almqvist, R. Bhatia, G. Primbs, N. Desai, S. Banerjee, R. Lal, Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophys. J. 86, 1753–1762 (2004).

    Article  Google Scholar 

  92. M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, H.E. Gaub, Affinity imaging of red blood cells using an atomic force microscope. J. Histochem. Cytochem. 48, 719–724 (2000).

    Article  Google Scholar 

  93. O.H. Willemsen, M.M.E. Snel, K.O. van der Werf, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. van Kyook, C.G. Figdor, Simultaneous height and adhesion imaging of antibody antigen interactions by atomic force microscopy. Biophys. J. 57, 2220–2228 (1998).

    Article  Google Scholar 

  94. B.V. Viani, L.I. Pietrasanta, J.B. Thompson, A. Chand, I.C. Gebeshuber, J.H. Kindt, M. Richter, H.G. Hansma, P.K. Hansma, Probing protein-protein interactions in real time. Nat. Struct. Biol. 7, 644–647 (2000).

    Article  Google Scholar 

  95. A. Ebner, F. Kienberger, G. Kada, C.M. Stroh, M. Geretschläger, A.S.M. Kamruzzahan, L. Wildling, W.T. Johnson, B. Ashcroft, J. Nelson, S.M. Lindsay, H.J. Gruber, P. Hinterdorfer, Localization of single avidin biotin interactions using simultaneous topography and molecular recognition imaging. ChemPhysChem 6, 897–900 (2005).

    Article  Google Scholar 

  96. W. Han, S.M. Lindsay, T. Jing, A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett. 69, 1–3 (1996).

    Article  Google Scholar 

  97. C.M. Stroh, A. Ebner, M. Geretschläger, G. Freudenthaler, F. Kienberger, A.S.M. Kamruzzahan, S.J. Smith-Gill, H.J. Gruber, P. Hinterdorfer, Simultaneous topography and recognition imaging using force microscopy. Biophys. J. 87, 1981–1990 (2004).

    Article  Google Scholar 

  98. C. Stroh, H. Wang, R. Bash, B. Ashcroft, J. Nelson, H.J. Gruber, D. Lohr, S.M. Lindsay, P. Hinterdorfer, Single-molecule recognition imaging microscope. Proc. Natl. Acad. Sci. USA 101, 12503–12507 (2004).

    Article  Google Scholar 

  99. L. Chtcheglova, J. Waschke, L. Wildling, D. Drenckhahn, P. Hinterdorfer, Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys. J. 9(3), L11–L13 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinterdorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinterdorfer, P., Ebner, A., Gruber, H., Kapon, R., Reich, Z. (2011). Molecular Recognition Force Microscopy: From Molecular Bonds to Complex Energy Landscapes. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics