Skip to main content

Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy

  • Chapter
  • First Online:
Nanotribology and Nanomechanics I

Abstract

Atomic force microscopy (AFM) is an indispensable technique for nanoscale topographic imaging as well as quantification of normal and lateral forces exerted on the AFM tip while interacting with the surface of materials. In order to measure these forces, an accurate determination of the normal and lateral forces exerted on the AFM cantilever is necessary. In this chapter, we present a critical review of various techniques for measuring cantilever stiffness in the normal and lateral/torsional directions in order to calibrate the normal and lateral forces exerted on AFM cantilevers. The key concepts of each technique are presented, along with a discussion of their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Bhushan, Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Heidelberg, 2008)

    Google Scholar 

  2. B. Bhushan, Springer Handbook of Nanotechnology, 3rd edn. (Springer, Heidelberg, 2010)

    Book  Google Scholar 

  3. B. Bhushan, K.J. Kwak, M. Palacio, Nanotribology and nanomechanics of AFM probe-based recording technology. J. Phys. Condens. Matter 20, 365207 (2008)

    Article  Google Scholar 

  4. G. Meyer, N.M. Amer, Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope. Appl. Phys. Lett. 57, 2089–2091 (1990)

    Article  Google Scholar 

  5. T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol. A 8, 3386–3396 (1990)

    Article  Google Scholar 

  6. O. Wolter, T. Bayer, J. Greschner, Micromachined silicon sensors for scanning force microscopy. J. Vac. Sci. Technol. B 9, 1353–1357 (1991)

    Article  Google Scholar 

  7. B. Ohler, Application Note 94: Practical advice on the determination of cantilever spring constants (2007), http://www.veeco.com/library

  8. J.E. Sader, I. Larson, P. Mulvaney, L.R. White, Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995)

    Article  Google Scholar 

  9. J. Ruan, B. Bhushan, Atomic-scale friction measurements using friction force microscopy: part I. General principles and new measurement techniques. ASME J. Tribol. 116, 378–388 (1994)

    Article  Google Scholar 

  10. J.M. Neumeister, W.A. Ducker, Lateral, normal and longitudinal spring constants of atomic force microscopy cantilevers. Rev. Sci. Instrum. 65, 2527–2531 (1994)

    Article  Google Scholar 

  11. C.A. Clifford, M.P. Seah, The determination of atomic force microscope cantilever spring constants via dimensional methods for nanomechanical analysis. Nanotechnology 16, 1666–1680 (2005)

    Article  Google Scholar 

  12. S.M. Cook, K.M. Lang, K.M. Chynoweth, M. Wigton, R.W. Simmonds, T.E. Schaffer, Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17, 2135–2145 (2006)

    Article  Google Scholar 

  13. T. Pettersson, N. Nordgren, M.W. Rutland, A. Feiler, Comparison of different methods to calibrate torsional spring constant and photodetector for atomic force microscopy friction measurements in air and liquid. Rev. Sci. Instrum. 78, 093702 (2007)

    Article  Google Scholar 

  14. M.L.B. Palacio, B. Bhushan, Normal and lateral force calibration techniques for AFM cantilevers. Crit. Rev. Solid State Mater. Sci. 35, 73–104 (2010); ibid, Erratum. 35, 261 (2010)

    Google Scholar 

  15. D. Sarid, V. Elings, Review of scanning force microscopy. J. Vac. Sci. Technol. B 9, 431–437 (1991)

    Article  Google Scholar 

  16. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1970)

    MATH  Google Scholar 

  17. W.T. Thomson, M.D. Dahleh, Theory of Vibration with Applications, 5th edn. (Prentice Hall, Upper Saddle River, 1998)

    Google Scholar 

  18. J. Hutter, Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 21, 2630–2632 (2005)

    Article  Google Scholar 

  19. W.C. Young, R.G. Budynas, Roark’s Formulas for Stress and Strain, 7th edn. (McGraw-Hill, New York, 2002)

    Google Scholar 

  20. H.J. Butt, P. Siedle, K. Seifert, K. Fendler, T. Seeger, E. Bamberg, A.L. Weisenhorn, K. Goldie, A. Engel, Scan speed limit in atomic force microscopy. J. Microsc. 169, 75–84 (1993)

    Article  Google Scholar 

  21. J.E. Sader, Parallel beam approximation for V-shaped atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 4583–4586 (1995)

    Article  Google Scholar 

  22. Anonymous, Probes-Recommended Products, (Veeco Probes, Santa Barbara, 2008) http://www.veecoprobes.com

  23. T.R. Albrecht, C.F. Quate, Atomic resolution imaging of a nonconductor by atomic force microscopy. J. Appl. Phys. 62, 2599–2602 (1987)

    Article  Google Scholar 

  24. J.E. Sader, Susceptibility of atomic force microscopy cantilevers to lateral forces. Rev. Sci. Instrum. 74, 2438–2443 (2003)

    Article  Google Scholar 

  25. J.E. Sader, R.C. Sader, Suitability of atomic force microscope cantilevers to lateral forces: experimental verification. Appl. Phys. Lett. 83, 3195–3197 (2003)

    Article  Google Scholar 

  26. M. Tortonese, M. Kirk, Characterization of application specific probes for SPMs. Proc. SPIE 3009, 53–60 (1997)

    Article  Google Scholar 

  27. T.J. Senden, W.A. Ducker, Experimental determination of spring constants in atomic force microscopy. Langmuir 10, 1003–1004 (1994)

    Article  Google Scholar 

  28. G.A. Shaw, J. Kramar, J. Pratt, SI-traceable spring constant calibration of microfabricated cantilevers for small force measurement. Exp. Mech. 47, 143–151 (2007)

    Article  Google Scholar 

  29. M.S. Kim, J.J. Choi, Y.K. Park, J.H. Kim, Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC). Metrologia 43, 389–395 (2006)

    Article  MATH  Google Scholar 

  30. J.R. Pratt, J.A. Kramar, D.B. Newell, D.T. Smith, Review of SI traceable force metrology for instrumented indentation and atomic force microscopy. Meas. Sci. Technol. 16, 2129–2137 (2005)

    Article  Google Scholar 

  31. M.S. Kim, J.J. Choi, J.H. Kim, Y.K. Park, Si-traceable determination of spring constants of various atomic force microscope cantilevers with a small uncertainty of 1%. Meas. Sci. Technol. 18, 3351–3358 (2007)

    Article  Google Scholar 

  32. P.J. Cumpson, J. Hedley, Accurate analytical measurements in the atomic force microscope: a microfabricated spring constant standard potentially traceable to the SI. Nanotechnology 14, 1279–1288 (2003)

    Article  Google Scholar 

  33. R. Leach, D. Chetwynd, L. Blunt, J. Haycocks, P. Harris, K. Jackson, S. Oldfield, S. Reilly, Recent advances in traceable nanoscale dimension and force metrology in the UK. Meas. Sci. Technol. 17, 467–476 (2006)

    Article  Google Scholar 

  34. I. Behrens, L. Doering, E. Peiner, Piezoresistive cantilever as portable micro force calibration standard. J. Micromech. Microeng. 13, S171–S177 (2003)

    Article  Google Scholar 

  35. V. Nesterov, Facility and methods for the measurement of micro and nano forces in the range below 10-5 N with a resolution of 10-12 N (development concept). Meas. Sci. Technol. 18, 360–366 (2007)

    Article  Google Scholar 

  36. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma, A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403–405 (1993)

    Article  Google Scholar 

  37. J.E. Sader, Frequency response of cantilever beams immersed in various fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998)

    Article  Google Scholar 

  38. J.E. Sader, J.W.M. Chon, P. Mulvaney, Calibration of rectangular atomic force microscopy cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)

    Article  Google Scholar 

  39. J.E. Sader, J. Pacifico, C.P. Green, P. Mulvaney, General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. J. Appl. Phys. 97, 124903 (2005)

    Article  Google Scholar 

  40. B. Ohler, Cantilever spring constant calibration using laser Doppler vibrometry. Rev. Sci. Instrum. 78, 063701 (2007)

    Article  Google Scholar 

  41. J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    Article  Google Scholar 

  42. H.J. Butt, M. Jaschke, Calculation of thermal noise in atomic force microscopy. Nanotechnology 6, 1–7 (1995)

    Article  Google Scholar 

  43. G.A. Matei, E.J. Thoreson, J.R. Pratt, D.B. Newell, N.A. Burnham, Precision and accuracy of thermal calibration of atomic force microscopy cantilevers. Rev. Sci. Instrum. 77, 083703 (2006)

    Article  Google Scholar 

  44. Y.L. Wang, X.Z. Zhao, F.Q. Zhou, Improved parallel scan method for nanofriction force measurement with atomic force microscopy. Rev. Sci. Instrum. 78, 036107 (2007)

    Article  Google Scholar 

  45. N.S. Tambe, Nanotribological investigations of materials, coatings and lubricants for nanotechnology applications at high sliding velocities, Ph.D. dissertation, The Ohio State University, 2005, Available from http://www.ohiolink.edu/etd/send-pdf.cgi?osu1109949835

  46. D.F. Ogletree, R.W. Carpick, M. Salmeron, Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  Google Scholar 

  47. J. Ruan, B. Bhushan, Atomic-scale and microscale friction of graphite and diamond using friction force microscopy. J. Appl. Phys. 76, 5022–5035 (1994)

    Article  Google Scholar 

  48. J. Ruan, B. Bhushan, Frictional behavior of highly oriented pyrolytic graphite. J. Appl. Phys. 76, 8117–8120 (1994)

    Article  Google Scholar 

  49. V.N. Koinkar, B. Bhushan, Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 81, 2472–2479 (1997)

    Article  Google Scholar 

  50. S. Sundararajan, B. Bhushan, Topography-induced contributions to friction forces measured using an atomic force/friction force microscope. J. Appl. Phys. 88, 4825–4831 (2000)

    Article  Google Scholar 

  51. M. Varenberg, I. Etsion, G. Halperin, An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)

    Article  Google Scholar 

  52. B. Bhushan, Handbook of Micro/Nanotribology, 2nd edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  53. B. Bhushan, Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  54. E. Tocha, H. Schonherr, G.J. Vancso, Quantitative nanotribology by AFM: a novel universal calibration platform. Langmuir 22, 2340–2350 (2006)

    Article  Google Scholar 

  55. X. Ling, H.J. Butt, M. Kappl, Quantitative measurement of friction between single microspheres by friction force microscopy. Langmuir 23, 8392–8399 (2007)

    Article  Google Scholar 

  56. A. Feiler, P. Attard, I. Larson, Calibration of the torsional spring constant and the lateral photodiode response of frictional force microscopes. Rev. Sci. Instrum. 71, 2746–2750 (2000)

    Article  Google Scholar 

  57. G. Bogdanovic, A. Meurk, M.W. Rutland, Tip friction – torsional spring constant determination. Colloids Surf. B. Biointerfaces 19, 397–405 (2000)

    Article  Google Scholar 

  58. M.G. Reitsma, Lateral force calibration using a modified atomic force microscope cantilever. Rev. Sci. Instrum. 78, 106102 (2007)

    Article  Google Scholar 

  59. M.A.S. Quintanilla, D.T. Goddard, A calibration method for lateral forces for use with colloidal probe force microscopy cantilevers. Rev. Sci. Instrum. 79, 023701 (2008)

    Article  Google Scholar 

  60. S. Ecke, R. Raiteri, E. Bonaccurso, C. Reiner, H.J. Deiseroth, H.J. Butt, Measuring normal and friction forces acting on individual fine particles. Rev. Sci. Instrum. 72, 4164–4170 (2001)

    Article  Google Scholar 

  61. J. Stiernstedt, M.W. Rutland, P. Attard, A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev. Sci. Instrum. 76, 083710 (2005)

    Article  Google Scholar 

  62. P. Attard, A. Carambassis, M.W. Rutland, Dynamic surface force measurement. 2. Friction and the atomic force microscope. Langmuir 15, 553–563 (1999)

    Article  Google Scholar 

  63. J. Stiernstedt, M.W. Rutland, P. Attard, Erratum: A novel technique for the in situ calibration and measurement of friction with the atomic force microscope. Rev. Sci. Instrum. 77, 019901 (2006)

    Article  Google Scholar 

  64. P. Attard, Measurement and interpretation of elastic and viscoelastic properties with the atomic force microscope. J. Phys. Condens. Matter 19, 473201 (2007)

    Article  Google Scholar 

  65. P.J. Cumpson, J. Hedley, C.A. Clifford, Microelectromechanical device for lateral force calibration in the atomic force microscope: lateral electrical nanobalance. J. Vac. Sci. Technol. B 23, 1992–1997 (2005)

    Article  Google Scholar 

  66. S. Jeon, Y. Braiman, T. Thundat, Torsional spring constant obtained for an atomic force microscope cantilever. Appl. Phys. Lett. 84, 1795–1797 (2004)

    Article  Google Scholar 

  67. Q. Li, K.S. Kim, A. Rydberg, Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system. Rev. Sci. Instrum. 77, 065105 (2006)

    Article  Google Scholar 

  68. C.P. Green, H. Lioe, J.P. Cleveland, R. Proksch, P. Mulvaney, J.E. Sader, Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)

    Article  Google Scholar 

  69. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity (Pergamon, London, 1959)

    Google Scholar 

  70. R.J. Cannara, M. Eglin, R.W. Carpick, Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77, 053701 (2006)

    Article  Google Scholar 

  71. E. Liu, B. Blanpain, J.P. Celis, Calibration procedures for frictional measurements with a lateral force microscope. Wear 192, 141–150 (1996)

    Article  Google Scholar 

  72. R.G. Cain, M.G. Reitsma, S. Biggs, N.W. Page, Quantitative comparison of three calibration techniques for the lateral force microscope. Rev. Sci. Instrum. 72, 3304–3312 (2001)

    Article  Google Scholar 

  73. R. Piner, R.S. Ruoff, Cross talk between friction and height signals in atomic force microscopy. Rev. Sci. Instrum. 73, 3392–3394 (2002)

    Article  Google Scholar 

  74. D.B. Asay, S.H. Kim, Direct force balance method for atomic force microscopy lateral force calibration. Rev. Sci. Instrum. 77, 043903 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel L. B. Palacio .

Editor information

Editors and Affiliations

Appendix – Nomenclature

Appendix – Nomenclature

Roman Symbols

A

Adhesive force

a

Amplitude

b

Cantilever width

b l

Width of the leg in a triangular cantilever

c

Photodetector sensitivity

d

Distance of the tip to the edge of the cantilever

E

Young’s modulus

F

Friction force (lateral force)

f

Frequency of the cantilever

G

Shear modulus

H

Piezo tube height in axial sliding method

h

Cantilever thickness

I

Area moment of inertia

J

Mass moment of inertia

kB

Boltzmann’s constant

k x

Cantilever stiffness in the direction parallel to the longitudinal axis

k yB

Cantilever stiffness in the direction perpendicular to the longitudinal axis due to bending

k yT

Cantilever stiffness in the direction perpendicular to the longitudinal axis due to applied torque

k z

Cantilever stiffness in the normal direction

\( {k_{\phi }} \)

Cantilever torsional stiffness

L

Cantilever length

l

Lever length

Tip length

M T

Torsion moment

m

Mass of the cantilever

m*

Effective mass of the cantilever

m s

Mass of added particle

P

Normal load component in axial sliding method, or applied load in the wedge method

p

Area of the power spectrum in the thermal noise method

Q

Quality factor

r

Radius of added particle

T

Temperature (in thermal tune method), or friction/horizontal force component (in axial sliding, wedge and compliance hysteresis methods)

W

Normal load

w

Half width of the friction loop in the wedge method

z

Cantilever deflection

Greek Symbols

α

One-half the included angle between the legs of a triangular cantilever

α c c

Lateral force calibration factors in the wedge method

γ

Cantilever tilt relative to horizontal axis

Δ

Friction loop offset in the wedge method

δI,II

Deflection of the cantilever in the parts I and II

ε

Calibration factor in the lever method

η

Viscosity of fluid medium

μ

Coefficient of friction

ν

Poisson’s ratio

ρ

Density

θ

Inclination of calibration standard in the wedge method

θ II

Rotation of the legs of a triangular cantilever in the longitudinal direction

\( \phi \)

Cantilever rotation from applied torque

ω

Angular frequency of the cantilever

Γ

Hydrodynamic function in the resonance method

\( \varsigma \)

Damping ratio

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palacio, M.L.B., Bhushan, B. (2011). Calibration of Normal and Lateral Forces in Cantilevers Used in Atomic Force Microscopy. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics