Skip to main content

Mechanical Properties of Nanostructures

  • Chapter
  • First Online:
Nanotribology and Nanomechanics I

Abstract

NEMS Structural integrity is of paramount importance in all devices. Load applied during the use of devices can result in component failure. Cracks can develop and propagate under tensile stresses, leading to failure. Knowledge of the mechanical properties of nanostructures is necessary for designing realistic micro-/nanoelectromechanial systems (MEMS/NEMS) and biological micro-/nanoelectromechanical systems (bioMEMS/bioNEMS) devices. Elastic and inelastic properties are needed to predict the deformation due to an applied load in the elastic and inelastic regimes, respectively. The strength property is needed to predict the allowable operating limit. Some of the properties of interest are hardness, elastic modulus, bending strength, fracture toughness, and fatigue strength. Many of the mechanical properties are scale dependent; therefore these should be measured at relevant scales. Atomic force microscopy and nanoindenters can be used satisfactorily to evaluate the mechanical properties of micro-/nanoscale structures. Commonly used materials in MEMS/NEMS are single-crystal silicon and silicon-based materials, e.g., SiO2 and polysilicon films deposited by low-pressure chemical vapor deposition. Single-crystal SiC deposited on large-area silicon substrates is used for high-temperature micro-/nanosensors and actuators. Amorphous alloys can be formed on both metal and silicon substrates by sputtering and plating techniques, providing more flexibility in surface integration. Electroless-deposited Ni-P amorphous thin films have been used to construct LIGA technique microdevice microdevices, especially using the so-called LIGA (lithography, galvanoformung, abformung) techniques. Micro-/nanodevices need conductors to provide power, as well as electrical/magnetic signals, to make them functional. Electroplated gold films have found wide applications in electronic devices because of their ability to make thin films and be processed simply. Polymers, such as poly(methyl methacrylate) poly(methyl methacrylate) (PMMA) poly(dimethylsiloxane) (PDMS) (PMMA), poly(dimethylsiloxane) (PDMS), and polystyrene are commonly bioMEMS/bioNEMS nanofluidic device used in bioMEMS/bioNEMS, such as micro-/nanofluidic devices, because of ease of manufacturing and polymer biocompatible biomedical device reduced cost. Many polymers are biocompatible so they may be integrated into biomedical devices.

This chapter presents a review of mechanical property measurements on the micro-/nanoscale of various nanostructure stress and deformation analysis materials of interest, and stress and deformation analyses of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.S. Muller, R.T. Howe, S.D. Senturia, R.L. Smith, R.M. White (eds.): Microsensors (IEEE Press, New York, 1990)

    Google Scholar 

  2. I. Fujimasa: Micromachines: A New Era in Mechanical Engineering (Oxford Univ. Press, Oxford, 1996)

    Google Scholar 

  3. W.S. Trimmer (ed.): Micromachines and MEMS, Classic and Seminal Papers to 1990 (IEEE Press, New York, 1997)

    Google Scholar 

  4. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht, 1998)

    Book  Google Scholar 

  5. B. Bhushan: Handbook of Micro-/Nanotribology, 2nd edn. (CRC, Boca Raton, 1999)

    Google Scholar 

  6. B. Bhushan: Nanotribology and Nanomechanics, 2nd edn. (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  7. G.T.A. Kovacs: Micromachined Transducers Sourcebook (WCB McGraw-Hill, Boston, 1998)

    Google Scholar 

  8. S.D. Senturia: Microsystem Design (Kluwer, Boston, 2000)

    Google Scholar 

  9. M. Elwenspoek, R. Wiegerink: Mechanical Microsensors (Springer, Berlin, 2001)

    Book  Google Scholar 

  10. M. Gad-el-Hak: The MEMS Handbook (CRC, Boca Raton, 2002)

    MATH  Google Scholar 

  11. T.R. Hsu: MEMS and Microsystems: Design and Manufacture (McGraw-Hill, Boston, 2002)

    Google Scholar 

  12. M. Madou: Fundamentals of Microfabrication: The Science of Miniaturization, 2nd edn. (CRC, Boca Raton, 2002)

    Google Scholar 

  13. A. Hierlemann: Integrated Chemical Microsensor Systems in CMOS Technology (Springer, Berlin, 2005)

    Google Scholar 

  14. K.E. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley, New York, 1992)

    Google Scholar 

  15. G. Timp (ed.): Nanotechnology (Springer, New York, 1999)

    Google Scholar 

  16. M.S. Dresselhaus, G. Dresselhaus, P. Avouris: Carbon Nanotubes – Synthesis, Structure, Properties and Applications (Springer, Berlin, 2001)

    Book  Google Scholar 

  17. E.A. Rietman: Molecular Engineering of Nanosystems (Springer, New York, 2001)

    Book  Google Scholar 

  18. H.S. Nalwa (ed.): Nanostructures Materials and Nanotechnology (Academic, San Diego, 2002)

    Google Scholar 

  19. W.A. Goddard, D.W. Brenner, S.E. Lyshevski, G.J. Iafrate (ed.): Handbook of Nanoscience, Engineering, and Technology (CRC, Boca Raton, 2002)

    Google Scholar 

  20. A. Manz, H. Becker (eds.): Microsystem Technology in Chemistry and Life Sciences, Top. Curr. Chem., vol. 194 (Springer, Heidelberg, 1998)

    Google Scholar 

  21. J. Cheng, L.J. Kricka (eds.): Biochip Technology (Harwood Academic, Philadelphia, 2001)

    Google Scholar 

  22. M.J. Heller, A. Guttman (eds.): Integrated Microfabricated Biodevices (Marcel Dekker, New York, 2001)

    Google Scholar 

  23. C. Lai Poh San, E.P.H. Yap (eds.): Frontiers in Human Genetics (World Scientific, Singapore, 2001)

    Google Scholar 

  24. C.H. Mastrangelo, H. Becker (eds.): Microfluidics and BioMEMS, Proc. SPIE, vol. 4560 (SPIE, Bellingham, 2001)

    Google Scholar 

  25. H. Becker, L.E. Lacascio: Polymer microfluidic devices. Talanta 56, 267–287 (2002)

    Article  Google Scholar 

  26. D.J. Beebe, G.A. Mensing, G.M. Walker: Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4, 261–286 (2002)

    Article  Google Scholar 

  27. C.P. Poole, F.J. Owens: Introduction to Nanotechnology (Wiley, Hoboken, 2003)

    Google Scholar 

  28. A. van den Berg (ed.): Lab-on-a-Chip: Chemistry in Miniaturized Synthesis and Analysis Systems (Elsevier, Amsterdam, 2003)

    Google Scholar 

  29. J.V. Zoval, M.J. Madou: Centrifuge-based fluidic platforms. Proc. IEEE 92, 140–153 (2000)

    Article  Google Scholar 

  30. R. Raiteri, M. Grattarola, H. Butt, P. Skladal: Micromechanical cantilever-based biosensors. Sens. Actuators B 79, 115–126 (2001)

    Article  Google Scholar 

  31. W.C. Tang, A.P. Lee: Defense applications of MEMS. MRS Bulletin 26, 318–319 (2001)

    Article  Google Scholar 

  32. M.R. Taylor, P. Nguyen, J. Ching, K.E. Peterson: Simulation of microfluidic pumping in a genomic DNA blood-processing cassette. J. Micromech. Microeng. 13, 201–208 (2003)

    Article  Google Scholar 

  33. K. Park (ed.): Controlled Drug Delivery: Challenges and Strategies (American Chemical Society, Washington, 1997)

    Google Scholar 

  34. R.S. Shawgo, A.C.R. Grayson, Y. Li, M.J. Cima: BioMEMS for drug delivery. Curr. Opin. Solid State Mater. Sci. 6, 329–334 (2002)

    Article  Google Scholar 

  35. P.Å. Öberg, T. Togawa, F.A. Spelman: Sensors in Medicine and Health Care (Wiley, New York, 2004)

    Book  Google Scholar 

  36. S.N. Bhatia, C.S. Chen: Tissue engineering at the micro-scale, Biomed. Microdevices 2, 131–144 (1999)

    Article  Google Scholar 

  37. R.P. Lanza, R. Langer, J. Vacanti (eds.): Principles of Tissue Engineering (Academic, San Diego, 2000)

    Google Scholar 

  38. E. Leclerc, K.S. Furukawa, F. Miyata, T. Sakai, T. Ushida, T. Fujii: Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications, Biomaterials 25, 4683–4690 (2004)

    Article  Google Scholar 

  39. T.H. Schulte, R.L. Bardell, B.H. Weigl: Microfluidic technologies in clinical diagnostics. Clin. Chim. Acta 321, 1–10 (2002)

    Article  Google Scholar 

  40. B. Bhushan: Principles and Applications of Tribology (Wiley, New York, 1999)

    Google Scholar 

  41. B. Bhushan: Introduction to Tribology (Wiley, New York, 2002)

    Google Scholar 

  42. B. Bhushan: Macro- and microtribology of MEMS materials, in Modern Tribology Handbook, ed. by B. Bhushan (CRC, Boca Raton, 2001) pp. 1515–1548

    Google Scholar 

  43. S. Johansson, J.A. Schweitz, L. Tenerz, J. Tiren: Fracture testing of silicon microelements in-situ in a scanning electron microscope. J. Appl. Phys. 63, 4799–4803 (1988)

    Article  Google Scholar 

  44. F. Ericson, J.A. Schweitz: Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840–5844 (1990)

    Article  Google Scholar 

  45. E. Obermeier: Mechanical and thermophysical properties of thin film materials for MEMS: Techniques and devices. Micromech. Struct. Mater. Res. Symp. Proc., vol. 444 (Materials Research Society, Pittsburgh, 1996) pp. 39–57

    Google Scholar 

  46. C.J. Wilson, A. Ormeggi, M. Narbutovskih: Fracture testing of silicon microcantilever beams. J. Appl. Phys. 79, 2386–2393 (1996)

    Article  Google Scholar 

  47. W.N. Sharpe Jr., B. Yuan, R.L. Edwards: A new technique for measuring the mechanical properties of thin films. J. Microelectromech. Syst. 6, 193–199 (1997)

    Article  Google Scholar 

  48. K. Sato, T. Yoshioka, T. Anso, M. Shikida, T. Kawabata: Tensile testing of silicon film having different crystallographic orientations carried out on a silicon chip. Sens. Actuators A 70, 148–152 (1998)

    Article  Google Scholar 

  49. S. Greek, F. Ericson, S.S. Johansson, M. Furtsch, A. Rump: Mechanical characterization of thick polysilicon films: Young’s modulus and fracture strength evaluated with microstructures. J. Micromech. Microeng. 9, 245–251 (1999)

    Article  Google Scholar 

  50. D.A. LaVan, T.E. Buchheit: Strength of polysilicon for MEMS devices. Proc. SPIE 3880, 40–44 (1999)

    Article  Google Scholar 

  51. E. Mazza, J. Dual: Mechanical behavior of a μ m-sized single crystal silicon structure with sharp notches. J. Mech. Phys. Solids 47, 1795–1821 (1999)

    Article  MATH  Google Scholar 

  52. T. Yi, C.J. Kim: Measurement of mechanical properties for MEMS materials. Meas. Sci. Technol. 10, 706–716 (1999)

    Article  Google Scholar 

  53. H. Kahn, M.A. Huff, A.H. Heuer: Heating effects on the Young’s modulus of films sputtered onto micromachined resonators. Microelectromech. Struct. Mater. Res. Symp. Proc., vol. 518 (Materials Research Society, Pittsburgh, 1998) pp. 33–38

    Google Scholar 

  54. S. Johansson, F. Ericson, J.A. Schweitz: Influence of surface-coatings on elasticity, residual-stresses, and fracture properties of silicon microelements. J. Appl. Phys. 65, 122–128 (1989)

    Article  Google Scholar 

  55. R. Ballarini, R.L. Mullen, Y. Yin, H. Kahn, S. Stemmer, A.H. Heuer: The fracture toughness of polysilicon microdevices: A first report. J. Mater. Res. 12, 915–922 (1997)

    Article  Google Scholar 

  56. H. Kahn, R. Ballarini, R.L. Mullen, A.H. Heuer: Electrostatically actuated failure of microfabricated polysilicon fracture mechanics specimens. Proc. R. Soc. Lond. Ser. A 455, 3807–3823 (1999)

    Article  Google Scholar 

  57. A.M. Fitzgerald, R.H. Dauskardt, T.W. Kenny: Fracture toughness and crack growth phenomena of plasma-etched single crystal silicon. Sens. Actuators A 83, 194–199 (2000)

    Article  Google Scholar 

  58. T. Tsuchiya, A. Inoue, J. Sakata: Tensile testing of insulating thin films: Humidity effect on tensile strength of SiO2 films. Sens. Actuators A 82, 286–290 (2000)

    Article  Google Scholar 

  59. J.A. Connally, S.B. Brown: Micromechanical fatigue testing. Exp. Mech. 33, 81–90 (1993)

    Article  Google Scholar 

  60. K. Komai, K. Minoshima, S. Inoue: Fracture and fatigue behavior of single-crystal silicon microelements and nanoscopic AFM damage evaluation. Microsyst. Technol. 5, 30–37 (1998)

    Article  Google Scholar 

  61. T. Namazu, Y. Isono, T. Tanaka: Evaluation of size effect on mechanical properties of single-crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450–459 (2000)

    Article  Google Scholar 

  62. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens. Actuators A 101, 338–351 (2002)

    Article  Google Scholar 

  63. X. Li, B. Bhushan: Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Surf. Coat. Technol. 163/164, 521–526 (2003)

    Article  Google Scholar 

  64. X. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim: Mechanical characterization of micro-/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)

    Article  Google Scholar 

  65. G. Wei, B. Bhushan, N. Ferrell, D. Hansford: Microfabrication and nanomechanical characterization of polymer MEMS for biological applications. J. Vac. Sci. Technol. A 23, 811–819 (2005)

    Article  Google Scholar 

  66. M. Palacio, B. Bhushan, N. Ferrell, D. Hansford: Nanomechanical characterization of polymer beam structures for bioMEMS applications. Sens. Actuators A 135, 637–650 (2007)

    Article  Google Scholar 

  67. T. Hsu, N. Sun: Residual stresses/strains analysis of MEMS, in Proceedings of the International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge, 1998) pp. 82–87

    Google Scholar 

  68. A. Kolpekwar, C. Kellen, R.D. Blanton: Fault model generation for MEMS, Proc. Int. Conf. Model. Simul. Microsyst. Semicond. Sens. Actuators, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge, 1998) pp. 111–116

    Google Scholar 

  69. H.A. Rueda, M.E. Law: Modeling of strain in boron-doped silicon cantilevers, in Proceedings of the International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators, Santa Clara, ed. by M. Laudon, B. Romanowicz (Computational Publications, Cambridge, 1998) pp. 94–99

    Google Scholar 

  70. M. Heinzelmann, M. Petzold: FEM analysis of microbeam bending experiments using ultra-micro indentation. Comput. Mater. Sci. 3, 169–176 (1994)

    Article  Google Scholar 

  71. C.J. Wilson, P.A. Beck: Fracture testing of bulk silicon microcantilever beams subjected to a side load. J. Microelectromech. Syst. 5, 142–150 (1996)

    Article  Google Scholar 

  72. B. Bhushan, G.B. Agrawal: Stress analysis of nanostructures using a finite element method. Nanotechnology 13, 515–523 (2002)

    Article  Google Scholar 

  73. B. Bhushan, G.B. Agrawal: Finite element analysis of nanostructures with roughness and scratches. Ultramicroscopy 97, 495–507 (2003)

    Article  Google Scholar 

  74. K.E. Petersen: Silicon as a mechanical material. Proc. IEEE 70, 420–457 (1982)

    Article  Google Scholar 

  75. B. Bhushan, S. Sundararajan, X. Li, C.A. Zorman, M. Mehregany: Micro-/nanotribological studies of single-crystal silicon and polysilicon and SiC films for use in MEMS devices, in Tribology Issues and Opportunities in MEMS, ed. by B. Bhushan (Kluwer, Dordrecht, 1998) pp. 407–430

    Chapter  Google Scholar 

  76. S. Sundararajan, B. Bhushan: Micro-/nanotribological studies of polysilicon and SiC films for MEMS applications. Wear 217, 251–261 (1998)

    Article  Google Scholar 

  77. X. Li, B. Bhushan: Micro-/nanomechanical characterization of ceramic films for microdevices. Thin Solid Films 340, 210–217 (1999)

    Article  Google Scholar 

  78. H. Becker, C. Gärtner: Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000)

    Article  Google Scholar 

  79. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J.A. Schueller, G.M. Whitesides: Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21, 27–40 (2000)

    Article  Google Scholar 

  80. M. Palacio, B. Bhushan, N. Ferrell, D. Hansford: Adhesion properties of polymer/silicon interfaces for biological micro-/nanoelectromechanical applications. J. Vac. Sci. Technol. A 25, 1275–1284 (2007)

    Article  Google Scholar 

  81. B. Ellis: Polymers: A Property Database (CRC, Boca Raton, 2000), available on compact disk, also see http://www.polymersdatabase.com/

    Google Scholar 

  82. J. Brandrup, E.H. Immergut, E.A. Grulke: Polymer Handbook (Wiley, New York, 1999)

    Google Scholar 

  83. J.E. Mark: Polymers Data Handbook (Oxford Univ. Press, New York, 1999)

    Google Scholar 

  84. B. Bhushan, X. Li: Nanomechanical characterization of solid surfaces and thin films. Int. Mater. Rev. 48, 125–164 (2003)

    Article  Google Scholar 

  85. B.R. Lawn, A.G. Evans, D.B. Marshall: Elastic/plastic indentation damage in ceramics: the median/radial system. J. Am. Ceram. Soc. 63, 574 (1980)

    Article  Google Scholar 

  86. S. Sundararajan, B. Bhushan, T. Namazu, Y. Isono: Mechanical property measurements of nanoscale structures using an atomic force microscope. Ultramicroscopy 91, 111–118 (2002)

    Article  Google Scholar 

  87. W.C. Young, R.G. Budynas: Roark’s Formulas for Stress and Strain (McGraw-Hill, New York, 2002)

    Google Scholar 

  88. R.W. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 3rd edn. (Wiley, New York, 1989) pp. 277–278

    Google Scholar 

  89. Anonymous: Properties of Silicon, EMIS Datarev. Ser., vol. 4 (INSPEC Institution of Electrical Engineers, London, 1988)

    Google Scholar 

  90. C.T.-C. Nguyen, R.T. Howe: An integrated CMOS micromechanical resonator high-Q oscillator. IEEE J. Solid-State Circuits 34, 440–455 (1999)

    Article  Google Scholar 

  91. L.J. Hornbeck: A digital light processing update – status and future applications. Proc. Soc. Photo-Opt. Eng., Projection Displ. V, vol. 3634 (1999) pp. 158–170

    Google Scholar 

  92. M. Tanaka: Fracture toughness and crack morphology in indentation fracture of brittle materials. J. Mater. Sci. 31, 749 (1996)

    Article  Google Scholar 

  93. B. Bhushan, S. Venkatesan: Mechanical and tribological properties of silicon for micromechanical applications: A review. Adv. Inf. Storage Syst. 5, 211–239 (1993)

    Google Scholar 

  94. B. Bhushan, B.K. Gupta: Handbook of Tribology: Materials, Coatings, and Surface Treatments (McGraw-Hill, New York, 1991), reprint with corrections (Krieger, Malabar, 1997)

    Google Scholar 

  95. T. Tsuchiya, O. Tabata, J. Sakata, Y. Taga: Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films. J. Microelectromech. Syst. 7, 106–113 (1998)

    Article  Google Scholar 

  96. T. Yi, L. Li, C.J. Kim: Microscale material testing of single crystalline silicon: Process effects on surface morphology and tensile strength. Sens. Actuators A 83, 172–178 (2000)

    Article  Google Scholar 

  97. I.H. Loh, M.S. Sheu, A.B. Fischer: Biocompatible polymer surfaces, in Functional Polymers: Syntheses and Applications, ed. by R. Arshady (American Chemical Society, Washington, 1997)

    Google Scholar 

  98. D.B. Holt, P.R. Gauger, A.W. Kusterbech, F.S. Ligler: Fabrication of a capillary immunosensor in polymethyl methacrylate. Biosens. Bioelectron. 17, 95–103 (2002)

    Article  Google Scholar 

  99. F.W.J. Billmeyer: Textbook of Polymer Science (Wiley, New York, 1984)

    Google Scholar 

  100. Anonymous: Rohm and Haas General Information on PMMA (Philadelphia)

    Google Scholar 

  101. T.G. van Kooten, H.T. Spijker, H.H. Busscher: Plasma-treated polystyrene surfaces: Model surface for studying cell-biomaterial interactions. Biomaterials 25, 1735–1747 (2004)

    Article  Google Scholar 

  102. M. Alexandre, P. Dubois: Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 28, 1–63 (2000)

    Article  Google Scholar 

  103. S.S. Ray, M. Okamoto: Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003)

    Article  Google Scholar 

  104. R.H. Boundy, R.F. Boyer (eds.): Styrene, Its Polymers, Copolymers and Derivatives (Reinhold, New York, 1952)

    Google Scholar 

  105. Anonymous: Modern Plastics Encyclopedia (McGraw-Hill, New York, 1996)

    Google Scholar 

  106. S.P. Timoshenko, J.N. Goodier: Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1970)

    MATH  Google Scholar 

  107. J.E. Shigley, L.D. Mitchell: Mechanical Engineering Design, 4th edn. (McGraw-Hill, New York, 1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B. (2011). Mechanical Properties of Nanostructures. In: Bhushan, B. (eds) Nanotribology and Nanomechanics I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15283-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15283-2_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15282-5

  • Online ISBN: 978-3-642-15283-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics