Skip to main content

Distributed Online Learning of Central Pattern Generators in Modular Robots

  • Conference paper
From Animals to Animats 11 (SAB 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6226))

Included in the following conference series:

Abstract

In this paper we study distributed online learning of locomotion gaits for modular robots. The learning is based on a stochastic approximation method, SPSA, which optimizes the parameters of coupled oscillators used to generate periodic actuation patterns. The strategy is implemented in a distributed fashion, based on a globally shared reward signal, but otherwise utilizing local communication only. In a physics-based simulation of modular Roombots robots we experiment with online learning of gaits and study the effects of: module failures, different robot morphologies, and rough terrains. The experiments demonstrate fast online learning, typically 5-30 min. for convergence to high performing gaits (≈ 30 cm/sec), despite high numbers of open parameters (45-54). We conclude that the proposed approach is efficient, effective and a promising candidate for online learning on many other robotic platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bongard, J., Zykov, V., Lipson, H.: Resilient machines through continuous self-modeling. Science 314(5802), 1118–1121 (2006)

    Article  Google Scholar 

  2. Christensen, D.J., Bordignon, M., Schultz, U.P., Shaikh, D., Stoy, K.: Morphology independent learning in modular robots. In: Proceedings of International Symposium on Distributed Autonomous Robotic Systems 8 (DARS 2008), pp. 379–391 (2008)

    Google Scholar 

  3. Christensen, D.J., Schultz, U.P., Stoy, K.: A distributed strategy for gait adaptation in modular robots. In: Proceedings of the IEEE Int. Conference on Robotics and Automation, ICRA (2010)

    Google Scholar 

  4. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Networks 21(4), 642–653 (2008)

    Article  Google Scholar 

  5. Kamimura, A., Kurokawa, H., Yoshida, E., Murata, S., Tomita, K., Kokaji, S.: Automatic locomotion design and experiments for a modular robotic system. IEEE/ASME Transactions on Mechatronics 10(3), 314–325 (2005)

    Article  Google Scholar 

  6. Lipson, H., Pollack, J.B.: Automatic design and manufacture of robotic lifeforms. Nature 406, 974–978 (2000)

    Article  Google Scholar 

  7. Maes, P., Brooks, R.A.: Learning to coordinate behaviors. In: National Conference on Artificial Intelligence, pp. 796–802 (1990)

    Google Scholar 

  8. Marbach, D., Ijspeert, A.J.: Co-evolution of configuration and control for homogenous modular robots. In: Proc. 8th Int. Conf. on Intelligent Autonomous Systems, Amsterdam, Holland, pp. 712–719 (2004)

    Google Scholar 

  9. Marbach, D., Ijspeert, A.J.: Online Optimization of Modular Robot Locomotion. In: Proceedings of the IEEE Int. Conference on Mechatronics and Automation (ICMA 2005), pp. 248–253 (2005)

    Google Scholar 

  10. Sims, K.: Evolving 3d morphology and behavior by competition. In: Brooks, R., Maes, P. (eds.) Proc. Artificial Life IV, pp. 28–39. MIT Press, Cambridge (1994)

    Google Scholar 

  11. Smith, R.: Open dynamics engine (2005), http://www.ode.org

  12. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control 37(3), 332–341 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sproewitz, A., Billard, A., Dillenbourg, P., Ijspeert, A.J.: Roombots-mechanical design of self-reconfiguring modular robots for adaptive furniture. In: International Conference on Robotics and Automation (ICRA 2009), Kobe, Japan (May 2009)

    Google Scholar 

  14. Sproewitz, A., Moeckel, R., Maye, J., Ijspeert, A.J.: Learning to move in modular robots using central pattern generators and online optimization. Int. J. Rob. Res. 27(3-4), 423–443 (2008)

    Article  Google Scholar 

  15. van den Kieboom, J.: Biped locomotion and stability a practical approach. Master’s thesis, University of Groningen, The Netherlands (2009)

    Google Scholar 

  16. Webots. Commercial Mobile Robot Simulation Software, http://www.cyberbotics.com

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Christensen, D.J., Spröwitz, A., Ijspeert, A.J. (2010). Distributed Online Learning of Central Pattern Generators in Modular Robots. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, JA., Mouret, JB. (eds) From Animals to Animats 11. SAB 2010. Lecture Notes in Computer Science(), vol 6226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15193-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15193-4_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15192-7

  • Online ISBN: 978-3-642-15193-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics