Skip to main content

Perception of Vowel Sounds Within a Biologically Realistic Model of Efficient Coding

  • Chapter
  • First Online:
Vowel Inherent Spectral Change

Abstract

Predicated upon principles of information theory, efficient coding has proven valuable for understanding visual perception. Here, we illustrate how efficient coding provides a powerful explanatory framework for understanding speech perception. This framework dissolves debates about objects of perception, instead focusing on the objective of perception: optimizing information transmission between the environment and perceivers. A simple measure of physiologically significant information is shown to predict intelligibility of variable-rate speech and discriminability of vowel sounds. Reliable covariance between acoustic attributes in complex sounds, both speech and nonspeech, is demonstrated to be amply available in natural sounds and efficiently coded by listeners. An efficient coding framework provides a productive approach to answer questions concerning perception of vowel sounds (including vowel inherent spectral change), perception of speech, and perception most broadly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Consonant

CV:

Consonant–vowel

CVC:

Consonant–vowel-consonant

CSE:

Cochlea-scaled spectral entropy

ERB:

Equivalent rectangular bandwidth

f0:

Fundamental frequency

F1:

First formant

F2:

Second formant

F3:

Third formant

JND:

Just noticeable difference

PCA:

Principal component analysis

r:

Pearson product-moment correlation coefficient

TIMIT:

Texas Instruments/Massachusetts Institute of Technology

V:

Vowel

VC:

Vowel-consonant

VISC:

Vowel inherent spectral change

References

  • Aaltonen, O.: The effect of relative amplitude levels of F2 and F3 on the categorization of synthetic vowels. J. Phon. 13, 1–9 (1985)

    Google Scholar 

  • Ainsworth, W.A.: Duration as a cue in the recognition of synthetic vowels. J. Acoust. Soc. Am. 51, 648–651 (1972). doi:10.1121/1.1912889

    Article  Google Scholar 

  • Ainsworth, W.A.: The influence of precursive sequences on the perception of synthesized vowels. Lang. Speech 17, 103–109 (1974). doi:10.1177/002383097401700201

    Google Scholar 

  • Ainsworth, W.A.: Intrinsic and extrinsic factors in vowel judgments. In: Fant, G., Tatham, M. (eds.) Auditory Analysis and Perception of Speech, pp. 103–113. Academic, London (1975)

    Google Scholar 

  • Alexander, J.M., Kluender, K.R.: Spectral tilt change in stop consonant perception. J. Acoust. Soc. Am. 123, 386–396 (2008). doi:10.1121/1.2817617

    Article  Google Scholar 

  • Alexander, J.M., Kluender, K.R.: Temporal properties of perceptual calibration to local and broad spectral characteristics of a listening context. J. Acoust. Soc. Am. 128(6), 3597–3613 (2010). doi:10.1121/1.3500693

    Article  Google Scholar 

  • Assmann, P.F., Nearey, T.M.: Relationship between fundamental and formant frequencies in voice preference. J. Acoust. Soc. Am. 122, 35–43 (2007). doi:10.1121/1.2719045

    Article  Google Scholar 

  • Assmann, P.F., Nearey, T.M.: Identification of frequency-shifted vowels. J. Acoust. Soc. Am. 124, 3203–3212 (2008). doi:10.1121/1.2980456

    Article  Google Scholar 

  • Assmann, P.F., Summerfield, Q.: The perception of speech under adverse conditions. In: Greenberg, S., Ainsworth, W.A., Popper, A.N., Fay, R.R. (eds.) Speech Processing in the Auditory System, vol. 14, pp. 231–308. Springer, New York (2004). doi:10.1007/b97399

    Chapter  Google Scholar 

  • Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61, 183–193 (1954). doi:10.1037/h0054663

    Article  Google Scholar 

  • Attneave, F.: Applications of Information Theory to Psychology: A summary of Basic Concepts, Methods, and Results. Henry Holt and Company, Inc., New York (1959)

    Google Scholar 

  • Backus, B.T.: Perceptual metamers in stereoscopic vision. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing Systems, vol. 14. MIT Press, Cambridge (2002)

    Google Scholar 

  • Barlow, H.B.: Sensory mechanisms, the reduction of redundancy, and intelligence. NPL Symp. Mech. Thought Process. 10, 535–539 (1959)

    Google Scholar 

  • Barlow, H.B.: Possible principles underlying the transformations of sensory messages. In: Rosenblith, W.A. (ed.) Sensory Communication, pp. 53–85. MIT Press, Wiley, Cambridge, New York (1961)

    Google Scholar 

  • Barlow, H.B.: The knowledge used in vision and where it comes from. Philos. Trans. Roy. Soc. Lond. B, Biol. Sci. 352(1358), 1141–1147 (1997). doi:10.1098/rstb.1997.0097

    Article  Google Scholar 

  • Barlow, H.B.: Redundancy reduction revisited. Netw: Comput. Neural Syst. 12, 241–253 (2001). doi:10.1080/net.12.3.241.253

    Google Scholar 

  • Barlow, H.B., Földiák, P.: Adaptation and decorrelation in the cortex. In: Durbin, R., Miall, C., Mitchison, G. (eds.) The Computing Neuron, pp. 54–72. Addison-Wesley, New York (1989)

    Google Scholar 

  • Bladon, R.A.W., Lindblom, B.: Modeling the judgment of vowel quality differences. J. Acoust. Soc. Am. 69, 1414–1422 (1981). doi:10.1121/1.385824

    Article  Google Scholar 

  • Blumstein, S.E.: The mapping from acoustic structure to the phonetic categories of speech: The invariance problem. Behav. Brain Sci. 21, 260 (1998). doi:10.1017/S0140525X98221170

    Article  Google Scholar 

  • Broad, D.J.: Toward defining acoustic phonetic equivalence for vowels. Phonetica 33, 401–424 (1976)

    Google Scholar 

  • Bunton, K., Story, B.H.: Identification of synthetic vowels based on a time-varying model of the vocal tract area function. J. Acoust. Soc. Am. 127, 146–152 (2010). doi:10.1121/1.3313921

    Article  Google Scholar 

  • Caclin, A., Brattico, E., Tervaniemi Näätänen, R., Morlet, D., Giard, M.-H., McAdams, S.: Separate neural processing of timbre dimensions in auditory sensory memory. J. Cogn. Neurosci. 18, 1959–1972 (2006). doi:10.1162/jocn.2006.18.12.1959

    Article  Google Scholar 

  • Chechik, G., Anderson, M.J., Bar-Yosef, O., Young, E.D., Tishby, N., Nelken, I.: Reduction of information redundancy in the ascending auditory pathway. Neuron 51, 359–368 (2006). doi:10.1016/j.neuron.2006.06.030

    Article  Google Scholar 

  • Chiba, T., Kajiyama, M.: The Vowel: Its Nature and Structure. Tokyo Publishing Co., Tokyo (1941)

    Google Scholar 

  • Clements, G.N.: Does sonority have a phonetic basis? In: Raimy, E., Cairns, C. (eds.) Contemporary Views on Architecture and Representations in Phonological Theory, pp. 165–175. MIT Press, Cambridge (2009)

    Google Scholar 

  • Clifford, C.W.G., et al.: Visual adaptation: neural, psychological and computational aspects. Vision. Res. 47, 3125–3131 (2007). doi:10.1016/j.visres.2007.08.023

    Article  Google Scholar 

  • Cole, R., Yan, Y., Mak, B., Fanty, M., Bailey, T.: The contribution of consonants versus vowels to word recognition in fluent speech. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP’96), pp. 853–856, Atlanta, GA, (1996)

    Google Scholar 

  • Delattre, F.C., Liberman, A.M., Cooper, F.S.: Acoustic loci and transitional cues for consonants. J. Acoust. Soc. Am. 27, 769–773 (1955). doi:10.1121/1.1908024

    Article  Google Scholar 

  • Diehl, R.L., Kluender, K.R.: On the objects of speech perception. Ecol. Psychol. 1, 121–144 (1989). doi:10.1207/s15326969eco0102_2

    Article  Google Scholar 

  • Dresher, B.E., Rice, K.: Complexity in phonological representations. Toronto Working Papers in Linguistics, vol. 12, pp. i–iv (1994)

    Google Scholar 

  • Fairhall, A.L., Lewen, G.D., Bialek, W., de Ruyter van Steveninck, R.R.: Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001). doi:10.1038/35090500

    Article  Google Scholar 

  • Fant, C.G.M.: On the predictability of formant levels and spectrum envelopes from formant frequencies. In: Halle, M. (ed.) For Roman Jakobson: Essays on the Occasion of His Sixtieth Birthday, pp. 109–120. Mouton, The Hague (1956)

    Google Scholar 

  • Fant, G.: Acoustic Theory of Speech Production with Calculations Based on X-Ray Studies of Russian Articulations. Mouton, The Hague (1970)

    Google Scholar 

  • Fletcher, H.: Speech and Hearing in Communication. Krieger, New York, (1953/1995)

    Google Scholar 

  • Fogerty, D., Kewley-Port, D.: Perceptual contributions of the consonant-vowel boundary to sentence intelligibility. J. Acoust. Soc. Am. 126, 847–857 (2009). doi:10.1121/1.3159302

    Article  Google Scholar 

  • Fowler, C.A.: An event approach to the study of speech perception from a direct-realist perspective. J. Phon. 14, 3–28 (1986)

    Google Scholar 

  • Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., Dahlgren, N.: DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus CDROM. National Institute of Standards and Technology, NTIS Order No. PB91–505065 (1990)

    Google Scholar 

  • Geisler, W.S., Perry, J.S., Super, B.J., Gallogly, D.P.: Edge co-occurrence in natural images predicts contour grouping performance. Vision. Res. 41, 711–724 (2001). doi:10.1016/S0042-6989(00)00277-7

    Article  Google Scholar 

  • Gerstman, L.: Classification of self-normalized vowels. IEEE Trans. Audio Electroacoust. 16, 78–80 (1968). doi:10.1109/TAU.1968.1161953

    Article  Google Scholar 

  • Glasberg, B.R., Moore, B.C.J.: Deviation of auditory filter shapes from notched-noise data. Hear. Res. 47, 103–138 (1990). doi:10.1016/0378-5955(90)90170-T

    Article  Google Scholar 

  • Gottfried, T.L., Miller, J.L., Payton, P.E.: Effect of speaking rate on the perception of vowels. Phonetica 47, 155–172 (1990). doi:10.1159/000261860

    Article  Google Scholar 

  • Greenwood, D.D.: A cochlear frequency-position function for several species—29 years later. J. Acoust. Soc. Am. 87, 2592–2605 (1990). doi:10.1121/1.399052

    Article  Google Scholar 

  • Hebb, D.O.: Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  • Hedrick, M.S., NábÄ›lek, A.K.: Effect of F2 intensity on identification of /u/ in degraded listening conditions. J. Speech Lang. Hear. Res. 47, 1012–1021 (2004). doi:10.1044/1092-4388(2004/075

    Article  Google Scholar 

  • Hillenbrand, J.M., Nearey, T.M.: Identification of resynthesized /hVd/ utterances: effects of formant contour. J. Acoust. Soc. Am. 105, 3509–3523 (1999). doi:10.1121/1.424676

    Article  Google Scholar 

  • Hillenbrand, J., Getty, L.A., Clark, M.J., Wheeler, K.: Acoustic characteristics of American English vowels. J. Acoust. Soc. Am. 97, 3099–3111 (1995). doi:10.1121/1.411872

    Article  Google Scholar 

  • Hillis, J.M., Ernst, M.O., Banks, M.S., Landy, M.S.: Combining sensory information: Mandatory fusion within, but not between, senses. Science 298, 1627–1630 (2002). doi:10.1126/science.1075396

    Article  Google Scholar 

  • Houde, J.F., Jordan, M.I.: Sensorimotor adaptation of speech i: compensation and adaptation. J. Speech Lang. Hear. Res. 45, 295–310 (2002). doi:10.1044/1092-4388(2002/023

    Article  Google Scholar 

  • Jakobson, R., Halle, M.: The Fundamentals of Language. Mouton, The Hague (1971)

    Google Scholar 

  • Jenkins, J.J., Strange, W., Edman, T.R.: Identification of vowels in ‘vowelless’ syllables. Percept. Psychophys. 34, 441–450 (1983). doi:10.3758/BF03203059

    Article  Google Scholar 

  • Katseff, S., Johnson, K., House, J.: Auditory feedback shifts in one formant cause multi-formant compensation (A). J. Acoust. Soc. Am. 127, 1955 (2010). doi:10.1121/1.3384960

    Article  Google Scholar 

  • Katz, W.F., Assmann, P.F.: Identification of children’s and adults’ vowels: Intrinsic fundamental frequency, fundamental frequency dynamics, and presence of voicing. J. Phon. 29, 23–51 (2001). doi:10.1006/jpho.2000.0135

    Article  Google Scholar 

  • Kent, R.D.: Isovowel lines for the evaluation of vowel formant structure in speech disorders. J. Speech Hear. Disord. 44, 513–521 (1979)

    Google Scholar 

  • Kent, R.D., Miolo, G.: Phonetic abilities in the first year of life. In: Fletcher, P., MacWhinney, B. (eds.) Handbook of Child Language, pp. 303–334. Blackwell, London (1995)

    Google Scholar 

  • Kewley-Port, D., Burkle, T.Z., Lee, J.H.: Contribution of consonant versus vowel information to sentence intelligibility for young normal-hearing and elderly hearing-impaired listeners. J. Acoust. Soc. Am. 122, 2365–2375 (2007). doi:10.1121/1.2773986

    Article  Google Scholar 

  • Kiefte, M., Kluender, K.R.: The relative importance of spectral tilt in monophthongs and diphthongs. J. Acoust. Soc. Am. 117, 1395–1404 (2005). doi:10.1121/1.1861158

    Article  Google Scholar 

  • Kiefte, M., Kluender, K.R.: Absorption of reliable spectral characteristics in auditory perception. J. Acoust. Soc. Am. 123, 366–376 (2008). doi:10.1121/1.2804951

    Article  Google Scholar 

  • Kiefte, M.: The perception of spectrally and temporally distorted prevocalic stop consonants. unpublished doctoral dissertation, University of Alberta (2000)

    Google Scholar 

  • Kiefte, M., Enright, T., Marshall, L.: The role of formant amplitude in the perception of /i/ and /u/. J. Acoust. Soc. Am. 127, 2611–2621 (2010). doi:10.1121/1.3353124

    Article  Google Scholar 

  • Klatt, D.H.: Prediction of perceived phonetic distance from critical band spectra: a first step. In: Proceedings of ICASSP, pp. 1278–1281 (1982)

    Google Scholar 

  • Kluender, K.R., Alexander, J.M.: Perception of speech sounds. In: Dallos, P., Oertel, D. (eds.) The Senses: A Comprehensive Reference, vol. 3, pp. 829–860. Academic, San Diego (2007)

    Google Scholar 

  • Kluender, K.R., Kiefte, M.: Speech perception within a biologically-realistic information-theoretic framework. In: Gernsbacher, M.A., Traxler, M. (eds.) Handbook of Psycholinguistics, pp. 153–199. Elsevier, London (2006)

    Chapter  Google Scholar 

  • Kluender, K.R., Lotto, A.J.: Virtues and perils of empiricist approaches to speech perception. J. Acoust. Soc. Am. 105, 503–511 (1999). doi:10.1121/1.424587

    Article  Google Scholar 

  • Kluender, K.R., Diehl, R.L., Killeen, P.R.: Japanese quail can learn phonetic categories. Science 237, 1195–1197 (1987). doi:10.1126/science.3629235

    Article  Google Scholar 

  • Kluender, K.R., Coady, J.A., Kiefte, M.: Sensitivity to change in perception of speech. Speech Commun. 41(1), 59–69 (2003). doi:10.1016/S0167-6393(02)00093-6

    Article  Google Scholar 

  • Ladefoged, P.: Three Areas of Experimental Phonetics. Oxford University Press, London (1967)

    Google Scholar 

  • Ladefoged, P., Broadbent, D.: Information conveyed by vowels. J. Acoust. Soc. Am. 29, 98–104 (1957). doi:10.1121/1.1908694

    Article  Google Scholar 

  • Lee, J.H., Kewley-Port, D.: Intelligibility of interrupted sentences at subsegmental levels in young normal-hearing and elderly hearing-impaired listeners. J. Acoust. Soc. Am. 125, 1153–1163 (2009). doi:10.1121/1.3021304

    Article  Google Scholar 

  • Liberman, A.M., Mattingly, I.G.: The motor theory of speech perception revised. Cognition 21, 1–36 (1985). doi:10.1016/0010-0277(85)90021-6

    Article  Google Scholar 

  • Liberman, A.M., Harris, K.S., Hoffman, H.S., Griffith, B.C.: The discrimination of speech sounds within and across phoneme boundaries. J. Exp. Psychol. 54, 358–368 (1957). doi:10.1037/h0044417

    Article  Google Scholar 

  • Liljencrants, J., Lindblom, B.: Numerical simulation of vowel quality systems: the role of perceptual contrast. Language 48(4), 839–862 (1972). doi:10.2307/411991

    Article  Google Scholar 

  • Lindblom, B.: Phonetic universals in vowel systems. In: Ohala, J.J., Jaeger, J.J. (eds.) Experimental Phonology, pp. 13–44. Academic, Orlando (1986)

    Google Scholar 

  • Lindholm, J.M., Dorman, M., Taylor, B.E., Hannley, M.T.: Stimulus factors influencing the identification of voiced stop consonants by normal-hearing and hearing impaired adults. J. Acoust. Soc. Am. 83, 1608–1614 (1988). doi:10.1121/1.395915

    Article  Google Scholar 

  • Lisker, L.: Rapid versus rabid: a catalogue of acoustical features that may cue the distinction. Haskins Laboratories Status Report on Speech Research, SR-54, pp. 127–132 (1978)

    Google Scholar 

  • Lloyd, R.J.: Some Researches into the Nature of the Vowel-Sound. Turner and Dunnett, Liverpool (1890a)

    Google Scholar 

  • Lloyd, R.J.: Speech sounds: their nature and causation (II-IV). Phonetische Studien 4, 37–67, 183–214, 275–306 (1891)

    Google Scholar 

  • Lloyd, R.J.: Speech sounds: their nature and causation (V-VII). Phonetische Studien 5, 1–32, 129–141, 263–271 (1892b)

    Google Scholar 

  • Lloyd, R.J.: Speech sounds: their nature and causation (I). Phonetische Studien 3, 251–278 (1890b)

    Google Scholar 

  • Lotto, A.J., Kluender, K.R., Holt, L.L.: Depolarizing the perceptual magnet effect. J. Acoust. Soc. Am. 103, 3648–3655 (1998). doi:10.1121/1.423087

    Article  Google Scholar 

  • Miller, J.L.: Effects of speaking rate on segmental distinctions. In: Eimas, P.D., Miller, J.L. (eds.) Perspectives on the Study of Speech, pp. 39–74. Erlbaum Associates, New Jersey (1981)

    Google Scholar 

  • Miller, J.D.: Auditory-perceptual interpretation of the vowel. J. Acoust. Soc. Am. 85, 2114–2134 (1989). doi:10.1121/1.397862

    Article  Google Scholar 

  • Miller, J.L., Dexter, E.R.: Effects of speaking rate and lexical status on phonetic perception. J. Exp. Psychol. Hum. Percept. Perform. 14, 369–378 (1988). doi:10.1037/0096-1523.14.3.369

    Article  Google Scholar 

  • Miller, J.L., Liberman, A.M.: Some effects of later-occurring information on the perception of stop-consonant and semivowel. Percept. Psychophys. 25, 457–465 (1979). doi:10.3758/BF03213823

    Article  Google Scholar 

  • Miller, G.A., Nicely, P.E.: An analysis of perceptual confusions among some English consonants. J. Acoust. Soc. Am. 27, 338–352 (1955). doi:10.1121/1.1907526. [Erratum: (1955) 27, 339. doi:10.1121/1.1907983]

    Article  Google Scholar 

  • Minifie, F.D.: Speech acoustics. In: Minifie, F.D., Hixon, T.J., Williams, F. (eds.) Normal Aspects of Speech, Hearing, and Language, pp. 235–284. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  • Moore, B.C.J., Glasberg, B.R.: Suggested formulas for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Am. 74, 750–753 (1983). doi:10.1121/1.389861

    Article  Google Scholar 

  • Nearey, T.M.: Phonetic Feature Systems for Vowels. Indiana University Linguistics Club, Bloomington (1978)

    Google Scholar 

  • Nearey, T.M.: Static, dynamic, and relational properties in vowel perception. J. Acoust. Soc. Am. 85, 2088–2113 (1989). doi:10.1121/1.397861

    Article  Google Scholar 

  • Nearey, T.M.: Speech perception as pattern recognition. J. Acoust. Soc. Am. 101, 3241–3254 (1997). doi:10.1121/1.418290

    Article  Google Scholar 

  • Nearey, T.M., Assmann, P.: Modeling the role of inherent spectral change in vowel identification. J. Acoust. Soc. Am. 80, 1297–1308 (1986). doi:10.1121/1.394433

    Article  Google Scholar 

  • Nearey, T.M.: Vowel inherent spectral change in the vowels of North American English. In: Morrison, G.S., Assmann, P.F. (Eds.) Vowel Inherent Spectral Change (ch. 4). Springer, Heidelberg (2013)

    Google Scholar 

  • Ng, A.Y., Jordan, M.I: On discriminative vs. generative classifiers: a comparison of logistic regresión and naive Bayes. In: Dietterich, T., Becker, S., Ghahramani, Z. (Eds.) Advances in Neural Information Processing (NIPS), vol. 14, MIT Press, Cambridge (2002)

    Google Scholar 

  • Nilsson, M., Soli, S., Sullivan, J.: Development of the Hearing In Noise Test for the measurement of speech reception thresholds in quiet and in noise. J. Acoust. Soc. Am. 95, 1085–1099 (1994). doi:10.1121/1.408469

    Article  Google Scholar 

  • Nordström, P.-E., Lindblom, B.: A normalization procedure for vowel formant data. In: Proceedings of the 7th International Congress of Phonetic Sciences, Leeds, England (1975)

    Google Scholar 

  • Nordström, P.-E.: Attempts to simulate female and infant vocal tracts from male area functions. Speech Transmission Laboratory Quarterly Progress and Status Report (KTH, Stockholm), pp. 2–3, 20–33, (1975)

    Google Scholar 

  • Ohala, J.J.: There is no interface between phonology and phonetics: a personal view. J. Phon. 18, 153–171 (1990)

    Google Scholar 

  • Oja, E.: A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982). doi:10.1007/BF00275687

    Article  MathSciNet  MATH  Google Scholar 

  • Okamura, M.: Shouni boin no nenrei teki henka ni kansuru kenkyuu: Sound Spectrograph niyoru formant kouzou to boin no bunka no kentou [Acoustical studies of Japanese vowels in children: The formant constructions and the developmental process]. Nippon Jibiinkoka Gakkai Kaiho [Japan. J. Otolaryngol.] 69, 1198–1214 (1966). doi:10.3950/jibiinkoka.69.6_1198

    Article  Google Scholar 

  • Owren, M.J., Cardillo, G.C.: The relative roles of vowels and consonants in discriminating talker identity versus word meaning. J. Acoust. Soc. Am. 119, 1727–1739 (2006). doi:10.1121/1.2161431

    Article  Google Scholar 

  • Patterson, R.D., Nimmo-Smith, I., Weber, D.L., Milroy, R.: The deterioration of hearing with age: Frequency selectivity, the critical ratio, the audiogram, and speech threshold. J. Acoust. Soc. Am. 72, 1788–1803 (1982). doi:10.1121/1.388652

    Article  Google Scholar 

  • Purcell, D.W., Munhall, K.G.: Weighting of auditory feedback across the English vowel space. In: Proceedings of the 8th International Seminar on Speech Production (2008)

    Google Scholar 

  • Purcell, D.W., Munhall, K.G.: Adaptive control of vowel formant frequency: evidence from real-time formant manipulation. J. Acoust. Soc. Am. 120, 966–977 (2006). doi:10.1121/1.2217714

    Article  Google Scholar 

  • Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Netw. 2, 459–473 (1989). doi:10.1016/0893-6080(89)90044-0

    Article  Google Scholar 

  • Saberi, K., Perrott, D.R.: Cognitive restoration of reversed speech. Nature 398, 760 (1999). doi:10.1038/19652

    Google Scholar 

  • Schwartz, O., Simoncelli, E.P.: Natural signal statistics and sensory gain control. Nat. Neurosci. 4, 819–825 (2001). doi:10.1038/90526

    Article  Google Scholar 

  • Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    MathSciNet  MATH  Google Scholar 

  • Simoncelli, E.P.: Vision and the statistics of the visual environment. Curr. Opinions Neurobiol. 13, 144–149 (2003). doi:10.1016/S0959-4388(03)00047-3

    Article  Google Scholar 

  • Simoncelli, E.P., Olshausen, B.A.: Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 1193–1215 (2001). doi:10.1146/annurev.neuro.24.1.1193

    Article  Google Scholar 

  • Stevens, K.N.: Acoustic Phonetics. MIT, Cambridge (1998)

    Google Scholar 

  • Stevens, K.N., Blumstein, S.E.: The search for invariant acoustic correlates of phonetic features. In: Eimas, P.D., Miller, J.L. (eds.) Perspectives in the Study of Speech. Erlbaum, Hillsdale (1981)

    Google Scholar 

  • Stilp, C.E., Kluender, K.R.: Cochlea-scaled spectral entropy, not consonants, vowels, or time, best predicts speech intelligibility. Proc. Natl. Acad. Sci. 107(27), 12387–12392 (2010). doi:10.1073/pnas.0913625107

    Article  Google Scholar 

  • Stilp, C.E., Kluender, K.R.: Efficient coding and statistically optimal weighting of covariance among acoustic attributes in novel sounds. PLoS ONE 7(1), e30845 (2012). doi:10.1371/journal.pone.0030845

    Article  Google Scholar 

  • Stilp, C.E., Alexander, J.M., Kiefte, M., Kluender, K.R.: Auditory color constancy: calibration to reliable spectral properties across nonspeech context and targets. Atten. Percept. Psychophys. 72, 470–480 (2010a). doi:10.3758/APP.72.2.470

    Article  Google Scholar 

  • Stilp, C.E., Kiefte, M., Alexander, J.M., Kluender, K.R.: Cochlea-scaled spectral entropy predicts rate-invariant intelligibility of temporally distorted sentences. J. Acoust. Soc. Am. 128, 2112–2126 (2010b). doi:10.1121/1.3483719

    Article  Google Scholar 

  • Stilp, C.E., Rogers, T.T., Kluender, K.R.: Rapid efficient coding of correlated complex auditory properties. Proc. Natl. Acad. Sci. 107(50), 21914–21919 (2010c). doi:10.1073/pnas.1009020107

    Article  Google Scholar 

  • Story, B.H., Bunton, K.: Simulation and identification of vowels based on a time-varying model of the vocal tract area function. In: Morrison G.S., Assmann P.F. (Eds.) Vowel Inherent Spectral Change (ch. 7), Springer, Heidelberg (2013)

    Google Scholar 

  • Sussman, H.M., McCaffrey, H.A., Matthews, S.A.: An investigation of locus equations as a source of relational invariance for stop place categorization. J. Acoust. Soc. Am. 90, 1309–1325 (1991). doi:10.1121/1.401923

    Article  Google Scholar 

  • Sussman, H.M., Fruchter, D., Hilbert, J., Sirosh, J.: Linear correlates in the speech signal: the orderly output constraint. Behav. Brain Sci. 21(2), 241–259 (1998). doi:10.1017/S0140525X98001174

    Google Scholar 

  • Trubetzkoy, N.S.: Principles of Phonology (C. Baltaxe, Translator) University of California Press, Berkeley. (Original work published in 1939) (1969)

    Google Scholar 

  • Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  • Vorperian, H.K., Kent, R.D., Lindstrom, M.J., Kalina, C.M., Gentry, L.R., Yandell, B.S.: Development of vocal tract length during early childhood: a magnetic resonance imaging study. J. Acoust. Soc. Am. 117, 338–350 (2005). doi:10.1121/1.1835958

    Google Scholar 

  • Vorperian, H.K., Kent, R.D., Gentry, L.R., Yandell, B.S.: Magnetic resonance imaging procedures to study the concurrent anatomic development of vocal tract structures: preliminary results. Int. J. Pediatr. Otorhinolaryngol. 49, 197–206 (1999). doi:10.1016/S0165-5876(99)00208-6

    Google Scholar 

  • Watkins, A.J.: Central, auditory mechanisms of perceptual compensation for spectral-envelope distortion. J. Acoust. Soc. Am. 90, 2942–2955 (1991). doi:10.1121/1.401769

    Article  Google Scholar 

  • Watkins, A.J., Makin, S.J.: Perceptual compensation for speaker differences and for spectral-envelope distortion. J. Acoust. Soc. Am. 96, 1263–1282 (1994). doi:10.1121/1.410275

    Article  Google Scholar 

  • Weiner, N.: Cybernetics. Wiley, New York (1948)

    Google Scholar 

Download references

Acknowledgments

We wish to thank Ray Kent, Peter Assmann, and Catherine Rogers for helpful insights from previous drafts of this chapter. Funding has been provided by NIDCD (first and second authors) and SSHRC (third author).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Kluender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kluender, K.R., Stilp, C.E., Kiefte, M. (2013). Perception of Vowel Sounds Within a Biologically Realistic Model of Efficient Coding. In: Morrison, G., Assmann, P. (eds) Vowel Inherent Spectral Change. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14209-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14209-3_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14208-6

  • Online ISBN: 978-3-642-14209-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics