Skip to main content

Considerations for Progressive Damage in Fiber-Reinforced Composite Materials Subject to Fatigue

  • Conference paper
High Performance Computing Systems and Applications (HPCS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5976))

Abstract

Due to the increased use of composite materials in the aerospace industry, numerous attempts have been made to develop fatigue models in order to predict the fatigue behaviour and consequently the fatigue life of these materials. Existing fatigue models have significant deficiencies, thus are not widely acceptable in the industry. A better understanding of the exhibited fatigue behaviour of composite materials is consequently required. The complex nature of fatigue behaviour in fiber-reinforced composite materials is presently investigated. An explicit progressive damage model, that is mechanistic in nature, is currently being developed using the concept of a representative volume element. A micromechanical finite element model that is capable of explicit damage initiation and propagation modeling is utilized for simulation of damage development. The predicted numerical results illustrate the capabilities of the current model. Future work is also outlined in the paper as the development of the fatigue model is continued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, B.D., Broutman, L.J., Chandrashekhara, K.: Analysis and Performance of Fiber Composites. John Wiley and Sons Inc., Hoboken (2006)

    Google Scholar 

  2. Harris, B.: A Historical Review of the Fatigue Behaviour of Fibre-Reinforced Plastics. In: Harris, B. (ed.) Fatigue in Composites, pp. 3–35. Woodhead Publishing Ltd., Cambridge (2003)

    Chapter  Google Scholar 

  3. Hashin, Z., Rotem, A.: A Fatigue Criterion for Fibre Reinforced Composite Materials. J. Comp. Mater. 7, 448–464 (1973)

    Article  Google Scholar 

  4. Reifsnider, K.L., Gao, Z.: A Micromechanics Model for Composites Under Fatigue Loading. Int. J. Fatigue 13, 149–156 (1991)

    Article  Google Scholar 

  5. Ellyin, F., El-Kadi, H.: A Fatigue Failure Criterion for Fiber Reinforced Composite Laminae. Comp. Struct. 15, 61–74 (1990)

    Article  Google Scholar 

  6. Fawaz, Z., Ellyin, F.: Fatigue Failure Model for Fibre-Reinforced Materials Under General Loading Conditions. J. Comp. Mater. 28, 1432–1451 (1994)

    Google Scholar 

  7. Bond, I.P.: Fatigue Life Prediction for GRP Subjected to Variable Amplitude Loading. Comp. Part A 30, 961–970 (1999)

    Article  Google Scholar 

  8. Miner, M.A.: Cumulative Damage in Fatigue. J. App. Mech. (ASME) 12, A159–A164 (1945)

    Google Scholar 

  9. Marco, S.M., Starkey, W.L.: A Concept of Fatigue Damage. Trans. ASME 76, 627–632 (1954)

    Google Scholar 

  10. Howe, R.J., Owen, M.J.: Accumulation of Damage in a Glass-Reinforced Plastic Under Tensile and Fatigue Loading. In: Proceedings of the 8th International Reinforced Plastics Congress, pp. 137–148. British Plastics Federation, London (1972)

    Google Scholar 

  11. Hashin, Z., Rotem, A.: A Cumulative Damage Theory of Fatigue Failure. Mat. Sci. Eng. 34, 147–160 (1978)

    Article  Google Scholar 

  12. Hwang, W., Han, K.S.: Cumulative Damage Models and Multi-stress Fatigue Life Prediction. J. Comp. Mater. 20, 125–153 (1986)

    Article  Google Scholar 

  13. Hahn, H.T., Kim, R.Y.: Fatigue Behavior of Composite Laminates. J. Comp. Mater. 10, 156–180 (1976)

    Article  Google Scholar 

  14. O’Brien, T.K., Reifsnider, K.L.: Fatigue Damage Evaluation Through Stiffness Measurements in Boron-Epoxy Laminates. J. Comp. Mater. 15, 55–77 (1981)

    Article  Google Scholar 

  15. Hwang, W., Han, K.S.: Fatigue of Composites - Fatigue Modulus Concept and Life Prediction. J. Comp. Mater. 20, 154–165 (1986)

    Article  Google Scholar 

  16. Whitworth, H.A.: Modeling Stiffness Reduction of Graphite/Epoxy Composite Laminates. J. Comp. Mater. 21, 362–372 (1987)

    Article  Google Scholar 

  17. Whitworth, H.A.: Cumulative Damage in Composites. J. Eng. Mater. Technol. 112, 358–361 (1990)

    Article  Google Scholar 

  18. Yang, J.N., Jones, D.L., Yang, S.H., Meskini, A.: A Stiffness Degradation Model for Graphite/Epoxy Laminates. J. Comp. Mater. 24, 753–769 (1990)

    Article  Google Scholar 

  19. Yang, J.N., Lee, L.J., Sheu, D.Y.: Modulus Reduction and Fatigue Damage of Matrix Dominated Composite Laminates. Comp. Struct. 21, 91–100 (1992)

    Article  Google Scholar 

  20. Hansen, U.: Damage Development in Woven Fabric Composites During Tension-Tension Fatigue. J. Comp. Mater. 33, 614–639 (1999)

    Google Scholar 

  21. VanPaepegem, W., Degrieck, J.: Experimental Set-up for and Numerical Modelling of Bending Fatigue Experiments on Plain Woven Glass/Epoxy Composites. Comp. Struct. 51, 1–8 (2001)

    Article  Google Scholar 

  22. Broutman, L.J., Sahu, S.: A New Theory to Predict Cumulative Fatigue Damage in Fibreglass Reinforced Plastics. In: Composite Materials: Testing and Design, pp. 170–188. ASTM STP 497, Philadelphia (1972)

    Google Scholar 

  23. Hahn, H.T., Kim, R.Y.: Proof Testing of Composite Materials. J. Comp. Mater. 9, 297–311 (1975)

    Article  Google Scholar 

  24. Yang, J.N., Jones, D.L.: Load Sequence Effects on Graphite/Epoxy [±35]2 S Laminates. In: Long-Term Behaviour of Composites, pp. 246–262. ASTM STP 813, Philadelphia (1983)

    Chapter  Google Scholar 

  25. Rotem, A.: Fatigue and Residual Strength of Composite Laminates. Eng. Fract. Mech. 25, 819–827 (1986)

    Article  Google Scholar 

  26. Adam, T., Dickson, R.F., Jones, C.J., Reiter, H., Harris, B.: A Power Law Fatigue Damage Model for Fibre-Reinforced Plastic Laminates. Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci. 200, 155–166 (1986)

    Article  Google Scholar 

  27. Caprino, G., D’Amore, A.: Flexural Fatigue Behaviour of Random Continuous-Fibre-Reinforced Thermoplastic Composites. Comp. Sci. Tech. 58, 957–965 (1998)

    Article  Google Scholar 

  28. Whitworth, H.A.: Evaluation of the Residual Strength Degradation in Composite Laminates Under Fatigue Loading. Comp. Struct. 48, 261–264 (2000)

    Article  Google Scholar 

  29. Bergmann, H.W., Prinz, R.: Fatigue Life Estimation of Graphite/Epoxy Laminates Under Consideration of Delamination Growth. Int. J. Numer. Methods 27, 323–341 (1989)

    Article  Google Scholar 

  30. Feng, X., Gilchrist, M.D., Kinloch, A.J., Matthews, F.L.: Development of a Method for Predicting the Fatigue Life of CFRP Components. In: Degallaix, S., Bathias, C., Fougeres, R. (eds.) Proceedings of the International Conference on Fatigue of Composites, pp. 407–414. La Societe Francaise de Metallurgie et de Materiaux, Paris (1997)

    Google Scholar 

  31. Hernaff-Gardin, C., Lafarie-Frenot, M.C., Goupillaud, I.: Prediction of Cracking Evolution Under Uniaxial Fatigue Loading in Crossply Composite Laminates. In: Degallaix, S., Bathias, C., Fougeres, R. (eds.) Proceedings of the International Conference on Fatigue of Composites, pp. 189–196. La Societe Francaise de Metallurgie et de Materiaux, Paris (1997)

    Google Scholar 

  32. Schon, J.: A Model of Fatigue Delamination in Composites. Comp. Sci. Tech. 60, 553–558 (2000)

    Article  Google Scholar 

  33. Highsmith, A.L., Reifsnider, K.L.: Stiffness-Reduction Mechanisms in Composite Laminates. In: Reifsnider, K.L. (ed.) Damage in Composite Materials, pp. 103–117. ASTM STP 775, Philadelphia (1982)

    Google Scholar 

  34. Hashin, Z.: Analysis of Cracked Laminates: A Variational Approach. Mech. Mater. 4, 121–136 (1985)

    Article  Google Scholar 

  35. El-Mahi, A., Berthelot, J.M., Brillaud, J.: Stiffness Reduction and Energy Release Rate of Cross-Ply Lamaintes During Fatigue Tests. Comp. Struct. 30, 123–130 (1995)

    Article  Google Scholar 

  36. Smith, P.A., Ogin, S.L.: On Transverse Matrix Cracking in Cross-Ply Laminates Loaded in Simple Bending. Composites: Part A 30, 1003–1008 (1999)

    Article  Google Scholar 

  37. Katerelos, D.T.G., Kashtalyan, M., Soutis, C., Galiotis, C.: Matrix Cracking in Polymeric Composites Laminates: Modelling and Experiments. Comp. Sci. Tech. 68, 2310–2317 (2008)

    Article  Google Scholar 

  38. Reifsnider, K.L.: The Critical Element Model: A Modeling Philosophy. Eng. Fract. Mech. 25, 739–749 (1986)

    Article  Google Scholar 

  39. Sendeckyj, G.P.: Life Prediction for Resin-Matrix Composite Materials. In: Reifsnider, K.L. (ed.) Fatigue of Composite Materials. Composite Material Series, vol. 4, pp. 431–483. Elsevier, Amsterdam (1990)

    Google Scholar 

  40. Laws, N., Dvorak, G.J., Hejazi, M.: Stiffness Changes in Unidirectional Composites Caused by Crack Systems. Mech. Mater. 2, 123–137 (1983)

    Article  Google Scholar 

  41. Talreja, R.: Transverse Cracking and Stiffness Reduction in Composite Laminates. J. Comp. Mater. 19, 355–375 (1985)

    Article  Google Scholar 

  42. Talreja, R.: Stiffness Properties of Composite Laminates with Matrix Cracking and Interior Delamination. Eng. Fract. Mech. 25, 751–762 (1986)

    Article  Google Scholar 

  43. Allen, D.H., Harris, C.E., Groves, S.E.: A Thermomechanical Constitutive Theory for Elastic Composites with Distributed Damage - I: Theoretical Development. Int. J. Sol. Struct. 23, 1301–1318 (1987)

    Article  MATH  Google Scholar 

  44. Allen, D.H., Harris, C.E., Groves, S.E.: A Thermomechanical Constitutive Theory for Elastic Composites with Distributed Damage - II: Application to Matrix Cracking in Laminated Composites. Int. J. Sol. Struct. 23, 1319–1338 (1987)

    Article  Google Scholar 

  45. Coats, T.W., Harris, C.E.: A Progressive Damage Methodology for Residual Strength Predictions of Notched Composite Panels. J. Comp. Mater. 33, 2193–2224 (1999)

    Google Scholar 

  46. Spearing, S.M., Beaumont, P.W.R., Smith, P.A.: Fatigue Damage Mechanics of Composite Materials - Part IV: Prediction of Post-fatigue Stiffness. Comp. Sci. Tech. 44, 309–317 (1992)

    Article  Google Scholar 

  47. Ladeveze, P., LeDantec, E.: Damage Modeling of the Elementary Ply for Laminated Composites. Comp. Sci. Tech. 43, 257–267 (1992)

    Article  Google Scholar 

  48. Shokrieh, M.M., Lessard, L.B.: Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling. J. Comp. Mater. 34, 1056–1080 (2000)

    Article  Google Scholar 

  49. Shokrieh, M.M., Lessard, L.B.: Progressive Fatigue Damage Modeling of Composite Materials, Part II: Material Characterization and Model Varification. J. Comp. Mater. 34, 1081–1116 (2000)

    Article  Google Scholar 

  50. Camanho, P.P., Matthews, F.L.: A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. J. Comp. Mater. 33, 2248–2280 (1999)

    Google Scholar 

  51. Sun, C.T., Vaidya, R.S.: Prediction of Composite Properties from a Representative Volume Element. Comp. Sci. Tech. 56, 171–179 (1996)

    Article  Google Scholar 

  52. Xia, Z., Chen, Y., Ellyin, F.: A Meso/Micro-mechanincal Model for Damage Progression in Glass-Fiber/Epoxy Cross-Ply Laminates by Finite-Element Analysis. Comp. Sci. Tech. 60, 1171–1179 (2000)

    Article  Google Scholar 

  53. Song, S., Waas, A.M., Shahwan, K.W., Xiao, X., Faruque, O.: Braided Textile Composites Under Compressive Loads: Modeling the Response, Strength and Degradation. Comp. Sci. Tech. 67, 3059–3070 (2007)

    Article  Google Scholar 

  54. Guo-Dong, F., Jun, L., Bao-Lai, W.: Progressive Damage and Nonlinear Analysis of 3D Four Directional Braided Composites Under Uniaxial Tension. Comp. Struct. 89, 126–133 (2009)

    Article  Google Scholar 

  55. Mishnaevsky Jr., L., Brondsted, P.: Micromechanics of Damage in Unidirectional Fiber Reinforced Composites: 3D Computational Analysis. Comp. Sci. Tech. 69, 1036–1044 (2009)

    Article  Google Scholar 

  56. Lubineau, G., Ladeveze, P., Violeau, D.: Durability of CFRP Laminates Under Thermomechanical Loading: A Micro-Meso Damage Model. Comp. Sci. Tech. 66, 983–992 (2006)

    Article  Google Scholar 

  57. Lubineau, G., Violeau, D., Ladeveze, P.: Illustrations of a Microdamage Model for Laminates Under Oxidizing Thermal Cycling. Comp. Sci. Tech. 69, 3–9 (2009)

    Article  Google Scholar 

  58. Shi, Z., Zhang, R.: Fatigue Damage of Fiber Reinforced Composites: Simultaneous Growth of Interfacial Debonding and Matrix Annular Crack Surrounding Fiber. J. Comp. Mater. 42, 2247–2258 (2008)

    Article  Google Scholar 

  59. Material Property Data Sheets, Matweb, http://www.matweb.com

  60. Blassiau, S., Thionnet, A., Bunsell, A.R.: Micromechanics of Load Transfer in a Unidirectional Carbon Fiber-Reinforced Epoxy Composite Due to Fiber Failures - Part I: Micromechanisms and 3D Analysis of Load Transfer: The Elastic Case. Comp. Struct. 74, 303–318 (2006)

    Article  Google Scholar 

  61. Ha, S.K., Jin, K.K., Huang, Y.: Micro-mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites. J. Comp. Mater. 42, 1873–1895 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Montesano, J., Behdinan, K., Fawaz, Z., Poon, C. (2010). Considerations for Progressive Damage in Fiber-Reinforced Composite Materials Subject to Fatigue. In: Mewhort, D.J.K., Cann, N.M., Slater, G.W., Naughton, T.J. (eds) High Performance Computing Systems and Applications. HPCS 2009. Lecture Notes in Computer Science, vol 5976. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12659-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12659-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12658-1

  • Online ISBN: 978-3-642-12659-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics