Skip to main content

Pharmaceutical and Medical Applications of Poly-Gamma-Glutamic Acid

  • Chapter
  • First Online:
Amino-Acid Homopolymers Occurring in Nature

Part of the book series: Microbiology Monographs ((MICROMONO,volume 15))

Abstract

Poly(amino acid)s have received considerable attention for biomedical applications. Poly(γ-glutamic acid) (γ-PGA), a natural polymer, is synthesized by several gram-positive bacteria. γ-PGA is anionic, water soluble, biodegradable, edible, nontoxic, and nonimmunogenic for humans and the environment, and its α-carboxylate side chains can be chemically modified to introduce various drugs, or to modulate the amphiphilicity of the polymer. These features of γ-PGA are very useful for pharmaceutical and biomedical applications. This paper reviews the preparation of polymeric drugs, nanoparticles, and hydrogels composed of γ-PGA and their medical applications as drug carriers and tissue-engineering materials. γ-PGA–drug conjugates, nanoparticles, and hydrogels fabricated from γ-PGA or its derivatives have wide application for drug delivery system and regenerative medical technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akagi T, Higashi M, Kaneko T, Kida T, Akashi M (2005a) In vitro enzymatic degradation of nanoparticles prepared from hydrophobically-modified poly(γ-glutamic acid). Macromol Biosci 5:598–602

    PubMed  CAS  Google Scholar 

  • Akagi T, Kaneko T, Kida T, Akashi M (2005b) Preparation and characterization of biodegradable nanoparticles based on poly(γ-glutamic acid) with L-phenylalanine as a protein carrier. J Control Release 108:226–236

    PubMed  CAS  Google Scholar 

  • Akagi T, Higashi M, Kaneko T, Kida T, Akashi M (2006a) Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(γ-glutamic acid)-graft-L-phenylalanine copolymer. Biomacromolecules 7:297–303

    PubMed  CAS  Google Scholar 

  • Akagi T, Kaneko T, Kida T, Akashi M (2006b) Multifunctional conjugation of proteins on/into core-shell type nanoparticles prepared by amphiphilic poly(γ-glutamic acid). J Biomater Sci Polym Ed 17:875–892

    PubMed  CAS  Google Scholar 

  • Akagi T, Baba M, Akashi M (2007a) Preparation of nanoparticles by the self-organization of polymers consisting of hydrophobic and hydrophilic segments: potential applications. Polymer 48:6729–6747

    CAS  Google Scholar 

  • Akagi T, Wang X, Uto T, Baba M, Akashi M (2007b) Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. Biomaterials 28:3427–3436

    PubMed  CAS  Google Scholar 

  • Akiyoshi K, Ueminami A, Kurumada S, Nomura Y (2000) Self-association of cholesteryl-bearing poly(L-lysine) in water and control of its secondary structure by host−guest interaction with cyclodextrin. Macromolecules 33:6752–6756

    CAS  Google Scholar 

  • Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822

    PubMed  CAS  Google Scholar 

  • Arimura H, Ohya Y, Ouchi T (2005) Formation of core-shell type biodegradable polymeric micelles from amphiphilic poly(aspartic acid)-block-polylactide diblock copolymer. Biomacromolecules 6:720–725

    PubMed  CAS  Google Scholar 

  • Asano T, Anai M, Sakoda H, Fujishiro M, Ono H, Kurihara H, Uchijima Y (2004) SGLT as a therapeutic target. Drugs Future 29:461–466

    CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    PubMed  CAS  Google Scholar 

  • Bodnar M, Kjoniksen AL, Molnar RM, Hartmann JF, Daroczi L, Nystrom B, Borbely J (2008) Nanoparticles formed by complexation of poly-γ-glutamic acid with lead ions. J Hazard Mater 153:1185–1192

    PubMed  CAS  Google Scholar 

  • Cohen S, Yoshioka T, Lucarelli M, Hwang LH, Langer R (1991) Controlled delivery systems for proteins based on poly(lactic/glycolic acid) microspheres. Pharm Res 8:713–720

    PubMed  CAS  Google Scholar 

  • Damg C, Michel C, Aprahamian M, Couvreur P, Devissagnet JP (1990) Nanocapsules as carriers for oral peptide delivery. J Cantrol Release 13:233–239

    Google Scholar 

  • Deuber HJ, Schultz W (1991) Reduced lipid concentration during four years of dialysis with low molecular weight heparin. Kidney Int 40:496–500

    PubMed  CAS  Google Scholar 

  • Di Paolo A, Danesi R, Falcone A, Cionini L, Vannozzi F, Masi G, Allegrini G, Mini E, Bocci G, Conte PF, Del Tacca M (2001) Relationship between 5-fluorouracil disposition, toxicity and dihydropyrimidine dehydrogenase activity in cancer patients. Ann Oncol 12:1301–1306

    PubMed  Google Scholar 

  • Dou H, Jiang M, Peng H, Chen D, Hong Y (2003) pH-dependent self-assembly: micellization and micelle-hollow-sphere transition of cellulose-based copolymers. Angew Chem Int Ed 42:1516–1519

    CAS  Google Scholar 

  • Edlund U, Albertsson AC (2000) Degradable polymer microspheres for controlled drug delivery. Adv Polym Sci 157:67–112

    Google Scholar 

  • Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412

    PubMed  CAS  Google Scholar 

  • Fahama S, Hileman RE, Fromm JR, Linhardt RJ, Rees DC (1996) Heparin structure and interactions with basic fibroblast growth factor. Science 271:1116–1120

    Google Scholar 

  • Fallon RJ, Schwartz AL (1989) Receptor-mediated delivery of drugs to hepatocytes. Adv Drug Deliv Rev 4:49–63

    CAS  Google Scholar 

  • Gamvrellis A, Leong D, Hanley JC, Xiang SD, Mottram P, Plebanski M (2004) Vaccines that facilitate antigen entry into dendritic cells. Immunol Cell Biol 82:506–516

    PubMed  CAS  Google Scholar 

  • Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109:169–188

    PubMed  CAS  Google Scholar 

  • Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    PubMed  CAS  Google Scholar 

  • Hajdu I, Bodnar M, Filipcsei G, Hartmann JF, Daroczi L, Zrinyi M, Borbely J (2009) Nanoparticles prepared by self-assembly of chitosan and poly-γ-glutamic acid. Colloid Polym Sci 286:343–350

    Google Scholar 

  • Hans ML, Lowman AM (2002) Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 6:319–327

    CAS  Google Scholar 

  • Harding CV, Song R (1994) Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol 153:4925–4933

    PubMed  CAS  Google Scholar 

  • Hartig SM, Greene RR, DasGupta J, Carlesso G, Dikov MM, Prokop A, Davidson JM (2007) Multifunctional nanoparticulate polyelectrolyte complexes. Pharm Res 24:2353–2369

    PubMed  CAS  Google Scholar 

  • Holowka EP, Pochan DJ, Deming TJ (2005) Charged polypeptide vesicles with controllable diameter. J Am Chem Soc 127:12423–12428

    PubMed  CAS  Google Scholar 

  • Holowka EP, Sun VZ, Kamei DT, Deming TJ (2007) Polyarginine segments in block copolypeptides drive both vesicular assembly and intracellular delivery. Nat Mater 6:52–57

    PubMed  CAS  Google Scholar 

  • Hsieh CY, Tsai SP, Wang DM, Chang YN, Hsieh HJ (2005) Preparation of γ-PGA/chitosan composite tissue engineering matrices. Biomaterials 26:5617–5623

    PubMed  CAS  Google Scholar 

  • Hubbell JA (2003) Materials as morphogenetic guides in tissue engineering. Curr Opin Biotechnol 14:551–558

    PubMed  CAS  Google Scholar 

  • Ikumi Y, Kida T, Sakuma S, Yamashita S, Akashi M (2008) Polymer-phloridzin conjugates as an anti-diabetic drug that inhibits glucose absorption through the Na+/glucose cotransporter (SGLT1) in the small intestine. J Control Release 125:42–49

    PubMed  CAS  Google Scholar 

  • Jaturanpinyo M, Harada A, Yuan X, Kataoka K (2004) Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjugate Chem 15:344–348

    CAS  Google Scholar 

  • Jelinkova M, Strohalm J, Plocova D, Subr V, Stcastny M, Ulbrich K, Rihova B (1998) Targeting of human and mouse T-lymphoctes by monoclonal antibody-HPMA copolymer-doxorubicin conjugates directed against different T-cell surface antigens. J Control Release 52:253–270

    PubMed  CAS  Google Scholar 

  • Jeong JH, Kang HS, Yang SR, Kim JD (2003) Polymer micelle-like aggregates of novel amphiphilic biodegradable poly(asparagine) grafted with poly(caprolactone). Polymer 44:583–591

    CAS  Google Scholar 

  • Jilek S, Merkle HP, Walter E (2007) DNA-loaded biodegradable microparticles as vaccine delivery systems and their interaction with dendritic cells. Adv Drug Deliv Rev 57:377–390

    Google Scholar 

  • Jin Y, Li J, Rong LF, Lu XW, Huang Y, Xu SY (2005) Pharmacokinetics and tissue distribution of 5-fluorouracil encapsulated by galactosylceramide liposomes in mice. Acta Pharmacol Sin 26:250–256

    PubMed  CAS  Google Scholar 

  • Joyce J, Cook J, Chabot D, Hepler R, Shoop W, Xu Q, Stambaugh T, Aste-Amezaga M, Wang S, Indrawati L, Bruner M, Friedlander A, Keller P, Caulfield M (2006) Immunogenicity and protective efficacy of Bacillus anthracis poly-γ-D-glutamic acid capsule covalently coupled to a protein carrier using a novel triazine-based conjugation strategy. J Biol Chem 281:4831–4843

    PubMed  CAS  Google Scholar 

  • Kakizawa Y, Kataoka K (2002) Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 54:203–222

    PubMed  CAS  Google Scholar 

  • Kaneko T, Higashi M, Matsusaki M, Akagi T, Akashi M (2005) Self-assembled soft nanofibrils of amphipathic polypeptides and their morphological transformation. Chem Mater 17:2484–2486

    CAS  Google Scholar 

  • Kang N, Perron ME, Prudhomme RE, Zhang Y, Gaucher G, Leroux JC (2005) Stereocomplex block copolymer micelles: core-shell nanostructures with enhanced stability. Nano Lett 5:315–319

    PubMed  CAS  Google Scholar 

  • Kang HS, Park SH, Lee YG, Son I (2007) Polyelectrolyte complex hydrogel composed of chitosan and poly(γ-glutamic acid) for biological application: preparation, physical properties, and cytocompatibility. J Appl Polym Sci 103:386–394

    CAS  Google Scholar 

  • Kataoka K, Matsumoto T, Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kwon GS (2000) Doxorubicin-loaded poly(ethylene glycol)-poly(β-benzyl-L-aspartate) copolymer micelles: their pharmaceutical characteristics and biological significance. J Control Release 64:143–153

    PubMed  CAS  Google Scholar 

  • Keller KM, Brauer PR, Keller JM (1989) Modulation of cell surface heparan sulfate structure by growth of cells in the presence of chlorate. Biochemistry 28:8100–8107

    PubMed  CAS  Google Scholar 

  • Kelton JC (1986) Heparin-induced thrombocyopenia. Haemostasis 16:173–186

    PubMed  CAS  Google Scholar 

  • Kim TW, Lee TY, Bae HC, Hahm JH, Kim YH, Park C, Kang TH, Kim CJ, Sung MH, Poo H (2007) Oral administration of high molecular mass poly-γ-glutamate induces NK cell-mediated antitumor immunity. J Immunol 179:775–780

    PubMed  CAS  Google Scholar 

  • Kim H, Akagi T, Akashi M (2009) Preparation of size tunable amphiphilic poly(amino acid) nanoparticles. Macromol Biosci 9:842–848

    PubMed  CAS  Google Scholar 

  • King EC, Watkins WJ, Blacker AJ, Bugg TDH (1998) Covalent modification in aqueous solution of poly-γ-D-glutamic acid from Bacillus licheniformis. J Polym Sci A Polym Chem 36:1995–1999

    CAS  Google Scholar 

  • Kishida A, Goto H, Murakami K, Kakinoki K, Endo T, Akashi M (1998a) Polymer drugs and polymeric drugs IX: Synthesis and 5-fluorouracil release profiles of biodegradable polymeric prodrugs γ-poly(α-hydroxymethyl-5-fluorouracil-glutamate). J Bioact Compat Polym 13:222–233

    CAS  Google Scholar 

  • Kishida A, Murakami K, Goto H, Kubota H, Endo T, Akashi M (1998b) Polymer drugs and polymeric drugs X: Slow release of 5-fluorouracil from biodegradable poly(γ-glutamic acid) and its benzyl ester matrixes. J Bioact Compat Polym 13:270–278

    CAS  Google Scholar 

  • Kubler-Kielb J, Liu TY, Mocca C, Majadly F, Robbins JB, Schneerson R (2006) Additional conjugation methods and immunogenicity of Bacillus anthracis poly-γ-D-glutamic acid-protein conjugates. Infect Immun 74:4744–4749

    PubMed  CAS  Google Scholar 

  • Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M (1993) Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotech Biochem 57:1212–1213

    CAS  Google Scholar 

  • Kunath K, Kopeckova P, Minko T, Kopecek J (2000) HPMA copolymer-anticancer drug-OV-TL16 antibody conjugates. 3. The effect of free and polymer-bound adriamycin on the expression of some genes in the OVCAR-3 human ovarian carcinoma cell line. Eur J Pharm Biopharm 49:11–15

    PubMed  CAS  Google Scholar 

  • Kurosaki T, Kitahara T, Fumoto S, Nishida K, Nakamura J, Niidome T, Kodama Y, Nakagawa H, To H, Sasaki H (2009) Ternary complexes of pDNA, polyethylenimine, and γ-polyglutamic acid for gene delivery systems. Biomaterials 30:2846–2853

    PubMed  CAS  Google Scholar 

  • Laner R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Google Scholar 

  • Lee KY, Mooney DJ (2001) Hydrogel for tissue engineering. Chem Rev 101:1869–1879

    PubMed  CAS  Google Scholar 

  • Lee ES, Shin HJ, Na K, Bae YH (2003) Poly(L-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 90:363–374

    PubMed  CAS  Google Scholar 

  • Lee J, Cho EC, Cho K (2004) Incorporation and release behavior of hydrophobic drug in functionalized poly(D, L-lactide)-block-poly(ethylene oxide) micelles. J Control Release 94:323–335

    PubMed  CAS  Google Scholar 

  • Lee PW, Peng SF, Su CJ, Mi FL, Chen HL, Wei MC, Lin HJ, Sung HW (2008) The use of biodegradable polymeric nanoparticles in combination with a low-pressure gene gun for transdermal DNA delivery. Biomaterials 29:742–751

    PubMed  CAS  Google Scholar 

  • Lee TY, Kim YH, Yoon SW, Choi JC, Yang JM, Kim CJ, Schiller JT, Sung MH, Poo HR (2009) Oral administration of poly-γ-glutamate induces TLR4- and dendritic cell-dependent antitumor effect. Cancer Immunol Immunother 58:1781–1794

    PubMed  CAS  Google Scholar 

  • Leonard CD, Scribner BH (1969) Subdural hematoma in patients undergoing hemodialysis. Lancet 2:239–249

    PubMed  CAS  Google Scholar 

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269

    PubMed  CAS  Google Scholar 

  • Li C (2002) Poly(L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    PubMed  CAS  Google Scholar 

  • Li SD, Huang L (2006) Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther 13:1313–1319

    PubMed  CAS  Google Scholar 

  • Li C, Wallace S (2008) Polymer-drug conjugates: recent development in clinical oncology. Adv Drug Delivery Rev 60:886–898

    CAS  Google Scholar 

  • Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S (1998) Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res 58:2404–2409

    PubMed  CAS  Google Scholar 

  • Li C, Newman RA, Wu QP, Ke S, Chen W, Hutto T, Kan Z, Brannan MD, Charnsangavej C, Wallace S (2000) Biodistribution of paclitaxel and poly(L-glutamic acid)-paclitaxel conjugate in mice with ovarian OCa-1 tumor. Cancer Chemother Pharmacol 46:416–422

    PubMed  CAS  Google Scholar 

  • Liang HF, Yang TF, Huang CT, Chen MC, Sung HW (2005) Preparation of nanoparticles composed of poly(γ-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J Control Release 105:213–225

    PubMed  CAS  Google Scholar 

  • Liang HF, Chen SC, Chen MC, Lee PW, Chen CT, Sung HW (2006a) Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjugate Chem 17:291–299

    CAS  Google Scholar 

  • Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC, Sung HW (2006b) Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27:2051–2059

    PubMed  CAS  Google Scholar 

  • Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW (2005) Preparation of nanoparticles composed of chitosan/poly-γ-glutamic acid and evaluation of their permeability through Caco-2 cells. Biomacromolecules 6:1104–1112

    PubMed  CAS  Google Scholar 

  • Lin J, Zhang S, Chen T, Lin S, Jin H (2007a) Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer. Int J Pharm 336:49–57

    PubMed  CAS  Google Scholar 

  • Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, Sung HW (2007b) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152

    PubMed  CAS  Google Scholar 

  • Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, Sung HW (2008) Multi-ion-crosslinked nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J Control Release 132:141–149

    PubMed  CAS  Google Scholar 

  • Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Delivery Rev 46:169–185

    CAS  Google Scholar 

  • Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74:47–61

    PubMed  CAS  Google Scholar 

  • Mann A, Richa R, Ganguli M (2008) DNA condensation by poly-L-lysine at the single molecule level: role of DNA concentration and polymer length. J Control Release 125:252–262

    PubMed  CAS  Google Scholar 

  • Matsuo K, Yoshikawa T, Oda A, Akagi T, Akashi M, Okada N, Nakagawa S (2007) Efficient generation of antigen-specific cellular immunity by vaccination with poly(γ-glutamic acid) nanoparticles entrapping endoplasmic reticulum-targeted peptides. Biochem Biophys Res Commun 362:1069–1072

    PubMed  CAS  Google Scholar 

  • Matsusaki M, Akashi M (2005) Novel functional biodegradable polymer IV: pH-sensitive controlled release of fibroblast growth factor-2 from a poly(γ-glutamic acid)sulfonate matrix for tissue engineering. Biomacromolecules 6:3351–3356

    PubMed  CAS  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A, Endo T, Akashi M (2002) Novel functional biodegradable polymer: Synthesis and anticoagulant activity of poly(γ-glutamic acid)sulfonate (γ-PGA-sulfonate). Bioconjugate Chem 13:23–28

    CAS  Google Scholar 

  • Matsusaki M, Hiwatari K, Higashi M, Kaneko T, Akashi M (2004) Stably-dispersed and surface-functional bionanoparticles prepared by self-assembling amphipathic polymers of hydrophilic poly(γ-glutamic acid) bearing hydrophobic amino acids. Chem Lett 33:398–399

    CAS  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A, Akashi M (2005a) Novel functional biodegradable polymer II: Fibroblast growth factor-2 activities of poly(γ-glutamic acid)sulfonate. Biomacromolecules 6:400–407

    PubMed  CAS  Google Scholar 

  • Matsusaki M, Serizawa T, Kishida A, Akashi M (2005b) Novel functional biodegradable polymer III: The construction of poly(γ-glutamic acid)sulfonate hydrogel with fibroblast growth factor-2 activity. J Biomed Mater Res 73A:485–491

    CAS  Google Scholar 

  • Matsusaki M, Yoshida H, Akashi M (2007) The construction of 3D-engineered tissues composed of cells and extracellular matrices by hydrogel template approach. Biomaterials 28:2729–2737

    PubMed  CAS  Google Scholar 

  • Mauzac M, Jozefonvictz J (1984) Anticoagulant activitiy of dextran derivatives. Part I: Synthesis and characterization. Biomaterials 5:301–304

    PubMed  CAS  Google Scholar 

  • Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, Juang JH, Sung HW (2008) Oral delivery of peptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjugate Chem 19:1248–1255

    CAS  Google Scholar 

  • Minko T, Kopeckova P, Kopecek J (2000) Efficacy of the chemotherapeutic action of HPMA copolymer-bound doxorubicin in a solid tumor model of ovarian carcinoma. Int J Cancer 86:108–117

    PubMed  CAS  Google Scholar 

  • Morillo M, Martinez de Ilarduya A, Munoz-Guerra S (2001) Comblike alkyl esters of biosynthetic poly(γ-glutamic acid). 1. Synthesis and characterization. Macromolecules 34:7868–7875

    CAS  Google Scholar 

  • Muller M, Reihs T, Ouyang W (2005) Needlelike and spherical polyelectrolyte complex nanoparticles of poly(L-lysine) and copolymers of maleic acid. Langmuir 21:465–469

    PubMed  CAS  Google Scholar 

  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM (2008) Nano/micro technologies for delivering macromolecular therapeutics using poly(D, L-lactide-co-glycolide) and its derivatives. J Control Release 125:193–209

    PubMed  CAS  Google Scholar 

  • Muzzarelli RAA, Tanfani F, Emanuelli M (1984) Sulfated N-(carboxymethyl)chitosans: Novel blood anticoagulants. Carbohydr Res 126:225–231

    PubMed  CAS  Google Scholar 

  • Na K, Lee KH, Bae YH (2004) pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J Control Release 97:513–525

    PubMed  CAS  Google Scholar 

  • Nam YS, Kang HS, Park JY, Park TG, Han SH, Chang IS (2003) New micelle-like polymer aggregates made from PEI-PLGA diblock copolymers: micellar characteristics and cellular uptake. Biomaterials 24:2053–2059

    PubMed  CAS  Google Scholar 

  • Nishimura S, Tokura S (1987) Preparation and antithrombogenic activities of heparinoid from 6-O-(carboxymethyl)chitin. Int J Biol Macromol 9:225–232

    CAS  Google Scholar 

  • Nixon DF, Hioe C, Chen PD, Bian Z, Kuebler P, Li ML, Qiu H, Li XM, Singh M, Richardson J, McGee P, Zamb T, Koff W, Wang CY, O'Hagan D (1996) Synthetic peptides entrapped in microparticles can elicit cytotoxic T cell activity. Vaccine 14:1523–1530

    PubMed  CAS  Google Scholar 

  • Obst M, Steinbuchel A (2004) Microbial degradation of poly(amino acid)s. Biomacromolecules 5:1166–1176

    PubMed  CAS  Google Scholar 

  • Okamoto S, Yoshii H, Akagi T, Akashi M, Ishikawa T, Okuno Y, Takahashi M, Yamanishi K, Mori Y (2007) Influenza hemagglutinin vaccine with poly(γ-glutamic acid) nanoparticles enhances the protection against influenza virus infection through both humoral and cell-mediated immunity. Vaccine 25:8270–8278

    PubMed  CAS  Google Scholar 

  • Okamoto S, Yoshii H, Ishikawa T, Akagi T, Akashi M, Takahashi M, Yamanishi K, Mori Y (2008) Single dose of inactivated Japanese encephalitis vaccine with poly(γ-glutamic acid) nanoparticles provides effective protection from Japanese encephalitis virus. Vaccine 26:589–594

    PubMed  CAS  Google Scholar 

  • Okamoto S, Matsuura M, Akagi T, Akashi M, Tanimoto T, Ishikawa T, Takahashi M, Yamanishi K, Mori Y (2009) Poly(γ-glutamic acid) nano-particles combined with mucosal influenza virus hemagglutinin vaccine protects against influenza virus infection in mice. Vaccine 27:5896–5905

    PubMed  CAS  Google Scholar 

  • Oppermann FB, Fickaitz S, Steinbiichel A (1998) Biodegradation of polyamides. Polym Degrad Stab 59:337–344

    CAS  Google Scholar 

  • Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55:329–347

    PubMed  CAS  Google Scholar 

  • Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, Levy RJ, Labhasetwar V (2003) Polymer degradation and in vitro release of a model protein from poly(D, L-lactide-co-glycolide) nano- and microparticles. J Control Release 92:173–187

    PubMed  CAS  Google Scholar 

  • Peng SF, Yang MJ, Su CJ, Chen HL, Lee PW, Wei MC, Sung HW (2009) Effects of incorporation of poly(γ-glutamic acid) in chitosan/DNA complex nanoparticles on cellular uptake and transfection efficiency. Biomaterials 30:1797–1808

    PubMed  CAS  Google Scholar 

  • Pinzani V, Bressolle F, Haug IJ, Galtier M, Blayac JP, Balmes P (1994) Cisplatin-induced renal toxicity and toxicity-modulating strategies: a review. Cancer Chemother Pharmacol 35:1–9

    PubMed  CAS  Google Scholar 

  • Portilla-Arias JA, Camargo B, Garcia-Alvarez M, Martinez de Ilarduya A, Munoz-Guerra S (2009) Nanoparticles made of microbial poly(γ-glutamate)s for encapsulation and delivery of drugs and proteins. J Biomater Sci Polym Ed 20:1065–1079

    PubMed  CAS  Google Scholar 

  • Prodhomme EJ, Tutt AL, Glennie MJ, Bugg TD (2003) Multivalent conjugates of poly-γ-D-glutamic acid from Bacillus licheniformis with antibody F(ab′) and glycopeptide ligands. Bioconjugate Chem 14:1148–1155

    CAS  Google Scholar 

  • Quellec P, Gref R, Perrin L, Dellacherie E, Sommer F, Verbavatz JM, Alonso MJ (1998) Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. J Biomed Mater Res 42:45–54

    PubMed  CAS  Google Scholar 

  • Radu JEF, Novak L, Hartmann JF, Beheshti N, Kjoniksen AL, Nystrom B, Borbely J (2008) Structural and dynamical characterization of poly-γ-glutamic acid-based cross-linked nanoparticles. Colloid Polym Sci 286:365–376

    CAS  Google Scholar 

  • Reihs T, Muller M, Lunkwitz K (2004) Preparation and adsorption of refined polyelectrolyte complex nanoparticles. J Colloid Interface Sci 271:69–79

    PubMed  CAS  Google Scholar 

  • Rhie GE, Roehrl MH, Mourez M, Collier RJ, Mekalanos JJ, Wang JY (2003) A dually active anthrax vaccine that confers protection against both bacilli and toxins. Proc Natl Acad Sci USA 100:10925–10930

    PubMed  CAS  Google Scholar 

  • Ringsdorf H (1975) Structure and properties of pharmacologically active polymers. J Polym Sci Symp 51:135–153

    CAS  Google Scholar 

  • Sah H (1999) Stabilization of proteins against methylene chloride / water interface induced denaturation and aggregation. J Control Release 58:143–151

    PubMed  CAS  Google Scholar 

  • Sakuma S, Suzuki N, Kikuchi H, Hiwatari K, Arikawa K, Kishida A, Akashi M (1997) Oral peptide delivery using nanoparticles composed of novel graft copolymers having hydrophobic backbone and hydrophilic branches. Int J Pharm 149:93–106

    CAS  Google Scholar 

  • Sakuma S, Hayashi M, Akashi M (2001) Design of nanoparticles composed of graft copolymers for oral peptide delivery. Adv Drug Deliv Rev 47:21–37

    PubMed  CAS  Google Scholar 

  • Sakuma S, Sagawa T, Masaoka Y, Kataoka M, Yamashita S, Shirasaka Y, Tamai I, Ikumi Y, Kida T, Akashi M (2009) Stabilization of enzyme-susceptible glucoside bonds of phloridzin through conjugation with poly(γ-glutamic acid). J Control Release 133:125–131

    PubMed  CAS  Google Scholar 

  • Sanda F, Fujiyama T, Endo T (2001) Chemical synthesis of poly-γ-glutamic acid by polycondensation of γ-glutamic acid dimer: synthesis and reaction of poly-γ-glutamic acid methyl ester. J Polym Sci A Polym Chem 39:732–741

    CAS  Google Scholar 

  • Sanda F, Fujiyama T, Endo T (2002) Stepwise synthesis of γ-glutamic acid 16-mer. Macromol Chem Phys 203:727–734

    CAS  Google Scholar 

  • Satchi-Fainaro R, Duncan R, Barnes CM (2000) Polymer therapeutics for cancer: current status and future challenges. Adv Polym Sci 193:1–65

    Google Scholar 

  • Schneerson R, Kubler-Kielb J, Liu TY, Dai ZD, Leppla SH, Yergey A, Backlund P, Shiloach J, Majadly F, Robbins JB (2003) Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proc Natl Acad Sci USA 100:8945–8950

    PubMed  CAS  Google Scholar 

  • Shih IL, Van YT (2001) The production of poly(γ-glutamic acid) from microorganisms and its various application. Bioresource Technol 79:207–225

    CAS  Google Scholar 

  • Shimokuri T, Kaneko T, Serizawa T, Akashi M (2004) Preparation and thermosensitivity of naturally occurring polypeptide poly(γ-glutamic acid) derivatives modified by alkyl groups. Macromol Biosci 4:407–411

    PubMed  CAS  Google Scholar 

  • Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW (2009) In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials 30:2329–2339

    PubMed  CAS  Google Scholar 

  • Sutherland MD, Kozel TR (2009) Macrophage uptake, intracellular localization, and degradation of poly-γ-D-glutamic acid, the capsular antigen of Bacillus anthracis. Infect Immun 77:532–538

    PubMed  CAS  Google Scholar 

  • Sutherland MD, Thorkildson P, Parks SD, Kozel TR (2008) In vivo fate and distribution of poly-γ-D-glutamic acid, the capsular antigen from bacillus anthracis. Infect Immun 76:899–906

    PubMed  CAS  Google Scholar 

  • Suzuki K, Yumura T, Tanaka Y, Serizawa T, Akashi M (2000) Interpenetrating inorganic-organic hybrid gels: Preparation of hybrid and replica gels. Chem Lett 29:1380–1381

    Google Scholar 

  • Tachibana Y, Kurisawa M, Uyama H, Kobayashi S (2003) Thermo- and pH-responsive biodegradable poly(α-N-substituted γ-glutamine)s. Biomacromolecules 4:1132–1134

    PubMed  CAS  Google Scholar 

  • Torchilin VP (2006) Multifunctional nanocarriers. Adv Drug Delivery Rev 58:1532–1555

    CAS  Google Scholar 

  • Tsujihara K, Hongu M, Saito K, Inamasu M, Arakawa K, Oku A, Matsumoto M (1996) Na+-glucose cotransporter inhibitors as antidiabetics. I. synthesis and pharmacological properties of 4’-dehydroxyphlorizin derivatives based on a new concept. Chem Pharm Bull 44:1174–1180

    PubMed  CAS  Google Scholar 

  • Uto T, Wang X, Sato K, Haraguchi M, Akagi T, Akashi M, Baba M (2007) Targeting of antigen to dendritic cells with poly(γ-glutamic acid) nanoparticles induce antigen-specific humoral and cellular immunity. J Immunol 178:2979–2986

    PubMed  CAS  Google Scholar 

  • Uto T, Akagi T, Hamasaki T, Akashi M, Baba M (2009a) Modulation of innate and adaptive immunity by biodegradable nanoparticles. Immunol Lett 125:46–52

    PubMed  CAS  Google Scholar 

  • Uto T, Wang X, Akagi T, Zenkyu R, Akashi M, Baba M (2009b) Improvement of adaptive immunity by antigen-carrying biodegradable nanoparticles. Biochem Biophys Res Commun 379:600–604

    PubMed  CAS  Google Scholar 

  • Vasir JK, Labhasetwar V (2007) Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Delivry Rev 59:718–728

    CAS  Google Scholar 

  • Wang TT, Fellows PF, Leighton TJ, Lucas AH (2004) Induction of opsonic antibodies to the γ-D-glutamic acid capsule of Bacillus anthracis by immunization with a synthetic peptide-carrier protein conjugate. FEMS Immunol Med Microbiol 40:231–237

    PubMed  Google Scholar 

  • Wang X, Akagi T, Akashi M, Baba M (2007a) Development of core-corona type polymeric nanoparticles as an anti-HIV-1 vaccine. Mini-Rev Org Chem 4:281–290

    Google Scholar 

  • Wang X, Uto T, Akagi T, Akashi M, Baba M (2007b) Induction of potent CD8+ T-cell responses by novel biodegradable nanoparticles carrying human immunodeficiency virus type 1 gp120. J Virol 81:10009–10016

    PubMed  CAS  Google Scholar 

  • Wang X, Uto T, Akagi T, Akashi M, Baba M (2008) Poly(γ-glutamic Acid) nanoparticles as an efficient antigen delivery and adjuvant system: potential for an anti-AIDS vaccine. J Med Virol 80:11–19

    PubMed  CAS  Google Scholar 

  • Weber J (1990) Poly(γ-glutamic acid)s are the major constituents of nematocysts in Hydra (Hydrozoa, Cnidaria). J Biol Chem 265:9664–9669

    PubMed  CAS  Google Scholar 

  • Ye H, Jin L, Hu R, Yi Z, Li J, Wu Y, Xi X, Wu Z (2006) Poly(γ, L-glutamic acid)-cisplatin conjugate effectively inhibits human breast tumor xenografted in nude mice. Biomaterials 27:5958–5965

    PubMed  CAS  Google Scholar 

  • Yoshida H, Klinkhammer K, Matsusaki M, Moller M, Klee D, Akashi M (2009a) Disulfide-crosslinked electrospun poly(γ-glutamic acid) nonwovens as reduction-responsive scaffolds. Macromol Biosci 9:568–574

    PubMed  CAS  Google Scholar 

  • Yoshida H, Matsusaki M, Akashi M (2009b) Scaffold-mediated 2D cellular orientations for construction of three dimensionally engineered tissues composed of oriented cells and extracellular matrices. Adv Funct Mater 19:1001–1007

    CAS  Google Scholar 

  • Yoshida H, Matsusaki M, Akashi M (2010) Development of thick and highly cell-incorporated engineered tissues by hydrogel template approach with basic fibroblast growth factor or ascorbic acid. J Biomater Sci Polymer Ed 21:415–428

    Google Scholar 

  • Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo MY, Yoshioka Y, Akagi T, Akashi M, Nakagawa S (2008a) Development of amphiphilic γ-PGA-nanoparticle based tumor vaccine: Potential of the nanoparticulate cytosolic protein delivery carrier. Biochem Biophys Res Commun 366:408–413

    PubMed  CAS  Google Scholar 

  • Yoshikawa T, Okada N, Oda A, Matsuo K, Matsuo K, Kayamuro H, Ishii Y, Yoshinaga T, Akagi T, Akashi M, Nakagawa S (2008b) Nanoparticles built by self-assembly of am phiphilic poly(γ-glutamic acid) can deliver antigens to antigen-presenting cells with high efficiency: A new tumor-vaccine carrier for eliciting effector T cells. Vaccine 26:1303–1313

    PubMed  CAS  Google Scholar 

  • Zhang L, Eisenberg A (1995) Multiple morphologies of crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 1268:1728–1731

    Google Scholar 

  • Zou Y, Wu QP, Tansey W, Chow D, Hung MC, Charnsangavej C, Wallace S, Li C (2001) Effectiveness of water soluble poly(L-glutamic acid)–camptothecin conjugate against resistant human lung cancer xenografted in nude mice. Int J Oncol 18:331–336

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akagi, T., Matsusaki, M., Akashi, M. (2010). Pharmaceutical and Medical Applications of Poly-Gamma-Glutamic Acid. In: Hamano, Y. (eds) Amino-Acid Homopolymers Occurring in Nature. Microbiology Monographs, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12453-2_7

Download citation

Publish with us

Policies and ethics