Skip to main content

Some Basic Physics of Converters and Breeder Reactors

  • Chapter
  • First Online:
Sustainable and Safe Nuclear Fission Energy

Part of the book series: Power Systems ((POWSYS))

  • 2845 Accesses

Abstract

The most important reactor physics characteristics needed for the understanding of the design and operation of nuclear reactors and of their fuel cycle are presented. This comprises the criticality factor, the neutron and temperature distributions in the reactor core and reactivity effects to be controlled by the safety systems. The evolution of the isotopic composition during burnup, i.e., the buildup of fission products and actinides in the reactor fuel, and the importance of conversion and breeding ratios are discussed together with the fuel utilization. Inherent safety characteristics like the negative fuel Doppler coefficient and the negative coolant temperature coefficient are essential for the safe operation and control of nuclear reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 eV = 1.602 \(\times \) 10\(^{-19}\) J is the kinetic energy acquired by an electron passing through a potential gradient of 1 V. 1 keV is equal to 10\(^{3}\) eV and 1 MeV is equal to 10\(^{6}\) eV. The energy of 0.0253 eV corresponds to a neutron velocity of 2,200 m/s.

References

  1. Weinberg AM, Wigner EP (1958) The physical theory of neutron chain reactors. University of Chicago Press, Chicago

    Google Scholar 

  2. Glasstone S, Edlund MC (1952) Nuclear reactor theory. D. Van Nostrand, Princeton

    Google Scholar 

  3. Lamarsh JR (1983) Introduction to nuclear reactor theory, 2nd edn. Addison-Wesley, Reading

    Google Scholar 

  4. Duderstadt JJ, Hamilton LJ (1976) Nuclear reactor analysis. Wiley, New York

    Google Scholar 

  5. Henry AF (1975) Nuclear-reactor analysis. MIT Press, Cambridge

    Google Scholar 

  6. Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold, New York

    Google Scholar 

  7. Meghreblian RV, Holmes DK (1960) Reactor analysis. McGraw-Hill, New York, pp 160–267 and 626–747

    Google Scholar 

  8. Radkowsky A (ed) (1964) Naval reactors physics handbook. U.S. Atomic Energy Commission, Washington, DC (Chap. 5)

    Google Scholar 

  9. Ott K et al (1983) Introductory nuclear reactor statics. American Nuclear Society, LaGrange Park

    Google Scholar 

  10. Michaudon A (1981) Nuclear fission and neutron induced fission cross sections. Pergamon Press, Oxford

    Google Scholar 

  11. Broeders CHM (2010) Personal communication, KIT Karlsruhe

    Google Scholar 

  12. Keepin GR (1965) Physics of nuclear kinetics. Addison-Wesley, Reading

    Google Scholar 

  13. Ash M (1965) Nuclear reactor kinetics. McGraw-Hill, New York

    Google Scholar 

  14. Hetrick DL (ed) (1972) Dynamics of nuclear systems. University of Arizona Press, Tucson

    Google Scholar 

  15. ANS-5.1-1994 (1985) Element standard, revision of ANSE/ANS-51-1979; R 1985

    Google Scholar 

  16. Nusbaumer O (2006) Decay heat in nuclear reactors. http://decay-heat.tripod.com/

  17. Rineiski A (2008) Decay heat production and TRU burner. Prog Nucl Energy 50:377–381

    Article  Google Scholar 

  18. Koning A et al (2006) The JEFF-3.1 nuclear data library, JEFF report 21, NEA No. 6190, OECD/NEA, Paris

    Google Scholar 

  19. Roussin RW, Young PG, McKnight R (1994) Current status of ENDF/B-VI. In: Proceedings of the international conference on nuclear data for science and technology, vol 2. Gatlinburg, p 692

    Google Scholar 

  20. Kikuchi Y (1994) JENDL-3, Revision 2: JENDL 3-2. In: Proceedings of the international conference on nuclear data for science and technology, vol. 2. Gatlinburg, p 685

    Google Scholar 

  21. Askew J et al (1966) A general description of the lattice code WIMS. J Br Nucl Energy Soc 5:564

    Google Scholar 

  22. Bondarenko I et al (1964) Group constants for nuclear reactor calculations. Translation–consultants Bureau Enterprice Inc., New York

    Google Scholar 

  23. Lewis EE, Miller WF (1993) Computational methods of neutron transport. Wiley-Interscience, New York (1984); reprinted by American Nuclear Society, LaGrange Park

    Google Scholar 

  24. Ronen Y (ed) (1986) CRC handbook of nuclear reactors calculations, vol I. CRC Press, Boca Raton

    Google Scholar 

  25. Alcouffe RE et al (1995) DANTSYS: a diffusion accelerated neutral particle transport code system, LA-12969-M. Los Alamos National Laboratory, Los Alamos

    Book  Google Scholar 

  26. Lawrence RD (1983) The DIF3D nodal neutronics option for two- and three-dimensional diffusion theory calculations in hexagonal geometry, ANL-83-1. Argonne National Laboratory, Argonne

    Book  Google Scholar 

  27. Briesmeister JF (ed) (2000) MCNP–a general Monte Carlo N-particle transport code, version 4C. Technical report, LA-13709-M. Los Alamos National Laboratory, USA

    Google Scholar 

  28. Oldekop W (1975) Einführung in die Kernreaktor- und Kernkraftwerkstechnik, Teil I. Karl Thiemig, München

    Google Scholar 

  29. Kessler G (1983) Nuclear fission reactors. Springer, Vienna

    Book  Google Scholar 

  30. Waltar A et al (1981) Fast breeder reactors. Pergamon Press, New York

    Google Scholar 

  31. Stacey W (2007) Nuclear reactor physics. Wiley, New York

    Book  Google Scholar 

  32. Wiese HW, Fischer U (1981) KORIGEN—Ein Programm zur Bestimmung des nuklearen Inventars von Reaktorbrennstoffen im Brennstoffkreislauf. Kernforschungszentrum Karlsruhe, KfK-3014

    Google Scholar 

  33. Haeck W et al (2007) An optimum approach to Monte Carlo burnup. Nucl Sci Eng 156:180–196

    Google Scholar 

  34. Fission Product Nuclear Data (FPND)—1977 (1978) In: Proceedings of the second advisory group meeting on fission product nuclear data, Energy Centrum Netherlands, Petten, 5–9 September 1977. International Atomic Energy Agency, IAEA-213, Vienna

    Google Scholar 

  35. ORNL (2005) SCALE a modular code system for performing standardized computer analyses for licensing evaluations, ORNL/TM-2005/39, version 5, vols I–III

    Google Scholar 

  36. Poston DI et al (1999) Development of a fully-automated Monte Carlo burnup code MONTEBURNS, LA-UR-99-42

    Google Scholar 

  37. Heusener G (1980) Personal communication, KfK Karlsruhe

    Google Scholar 

  38. Hummel H et al (1970) Reactivity coefficients in large fast power reactors. American Nuclear Society, LaGrange Park

    Google Scholar 

  39. Nicholson R et al (1968) The doppler effect in fast reactors, advances in nuclear science and technology, vol 4. Academic Press, New York, p 109

    Google Scholar 

  40. Ott K et al (1985) Nuclear reactor dynamics. American Nuclear Society, LaGrange Park

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, G. (2012). Some Basic Physics of Converters and Breeder Reactors. In: Sustainable and Safe Nuclear Fission Energy. Power Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11990-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11990-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11989-7

  • Online ISBN: 978-3-642-11990-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics