Skip to main content

Common Representational Format

  • Chapter
Image Fusion
  • 2965 Accesses

Abstract

The subject of this chapter is the common representational format. Conversion of all sensor observations to a common format is a basic requirement for image fusion. The reason for this is that only after conversion to a common format are the input images compatible, i. e. the input images “speak a common language” and image fusion may be performed. In this chapter we shall consider the principal theories and techniques which underlie the concept of a common representational format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahonen, T.: Face and texture image analysis with quantized filter response statistics. PhD thesis, University of Oulu, Finland (2009)

    Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Trans Patt. Anal. Mach. Intell. 28, 2037–2041 (2006)

    Article  Google Scholar 

  3. Behloul, F., Lelieveldt, B.P.E., Boudraa, A., Janier, M., Revel, D., Reiber, J.H.C.: Neuro-fuzzy systems for computer-aided myocardial viability assessment. IEEE Trans. Medical Imag. 20, 1302–1313 (2001)

    Article  Google Scholar 

  4. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans Patt. Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  5. Gevers, T., Smeulders, A.W.M.: Color-based object recognition. Patt. Recogn. 32, 453–464 (1999)

    Article  Google Scholar 

  6. Gevers, T., Stockman, H.M.G.: Robust photometric invariant region detection in multi-spectral images. Int. J. Comp. Vis. 53, 135–151 (2003)

    Article  Google Scholar 

  7. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  8. Ling, H., Jacobs, D.: Shape classification using the inner-distance. IEEE Trans. Patt. Anal. Mach. Intell. 29, 286–299 (2007)

    Article  Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant key-points. Int. J. Comp. Vis. 60, 91–100 (2004)

    Article  Google Scholar 

  10. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Patt. Recogn. 29, 51–59 (1999)

    Article  Google Scholar 

  11. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Patt. Anal. Mach. Intell. 24, 971–987 (2002)

    Article  Google Scholar 

  12. Mikolajczek, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans Patt. Anal. Mach. Intell. 27, 1615–1630 (2005)

    Article  Google Scholar 

  13. Schlei, B.R.: A new computational framework for 2D shape-enclosing contours. Image Vis. Comp. 27, 637–647 (2009)

    Article  Google Scholar 

  14. Thompson, P.M., Mega, M.S., Narr, K.L., Sowell, E.R., Blanton, R.E., Toga, A.W.: Brain image analysis and atlas construction. In: Handbook of Medical Imaging, Washington, USA, vol. 2. SPIE Press, Bellington

    Google Scholar 

  15. Valera Espina, M., Velastin, S.A.: Intelligent distributed surveillance systems: a review. IEE Proc. Vis. Image Sig. Process. 152, 192–204 (2005)

    Article  Google Scholar 

  16. Verboven, S., Hubert, M.: Libra: A matlab library for robust analysis. Chemometrics and Intell. Laboratory Syst. 75, 127–136 (2005)

    Article  Google Scholar 

  17. van de Weijer, J., Gevers, T., Smeulders, A.W.M.: Robust photometric invariant features from the color tensor. IEEE Trans. Image Process. 15, 118–127 (2006)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mitchell, H.B. (2010). Common Representational Format. In: Image Fusion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11216-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11216-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11215-7

  • Online ISBN: 978-3-642-11216-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics