Skip to main content

Instrumentation

  • Chapter
  • First Online:
Mass Spectrometry

Abstract

“A modern mass spectrometer is constructed from elements which approach the state-of-the-art in solid-state electronics, vacuum systems, magnet design, precision machining, and computerized data acquisition and processing” [1]. This is and has ever been a fully valid statement about mass spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ligon, W.V., Jr. Molecular Analysis by Mass Spectrometry. Science 1979, 205, 151–159.

    CAS  Google Scholar 

  2. Brunnée, C. The Ideal Mass Analyzer: Fact or Fiction? Int. J. Mass Spectrom. Ion Proc. 1987, 76, 125–237.

    Google Scholar 

  3. Beynon, J.H.Instruments, in Mass Spectrometry and its Applications to Organic Chemistry,Elsevier: Amsterdam, 1960; pp.4–27.

    Google Scholar 

  4. Habfast, K.; Aulinger, F. Massenspektrometrische Apparate, in Massenspektrometrie, Kienitz, H., editor; Verlag Chemie: Weinheim, 1968; pp.29–124.

    Google Scholar 

  5. Aulinger, F. Massenspektroskopische Geräte, in Massenspektrometrie, Kienitz, H., editor; Verlag Chemie: Weinheim, 1968; pp.125–154.

    Google Scholar 

  6. Brunnée, C. New Instrumentation in Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982, 45, 51–86.

    Google Scholar 

  7. Brunnée, C. 50 Years of MAT in Bremen. Rapid Commun. Mass Spectrom. 1997, 11, 694–707.

    Google Scholar 

  8. Chapman, J.R.; Errock, G.A.; Race, J.A. Science and Technology in Manchester: the Nuture of Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 1575–1586.

    CAS  Google Scholar 

  9. McLuckey, S.A. Intrumentation for Mass Spectrometry: 1997, 14 ed.; Karjalainen, E.J.; Hesso, A.E.; Jalonen, J.E.; Karjalainen, U.P., editors; Elsevier: Amsterdam, 1998; pp.153–196.

    Google Scholar 

  10. Badman, E.R.; Cooks, R.G. Miniature Mass Analyzers. J. Mass Spectrom. 2000, 35, 659–671.

    CAS  Google Scholar 

  11. Baykut, G.; Franzen, J. Mobile Mass Spectrometry; a Decade of Field Applications. Trends Anal. Chem. 1994, 13, 267–275.

    CAS  Google Scholar 

  12. Prieto, M.C.; Kovtoun, V.V.; Cotter, R.J. Miniaturized Linear Time-of-Flight Mass Spectrometer With Pulsed Extraction. J. Mass Spectrom. 2002, 37, 1158–1162.

    CAS  Google Scholar 

  13. Fenselau, C.; Caprioli, R. Mass Spectrometry in the Exploration of Mars. J. Mass Spectrom. 2003, 38, 1–10.

    CAS  Google Scholar 

  14. Arkin, C.R.; Griffin, T.P.; Ottens, A.K.; Diaz, J.A.; Follistein, D.W.; Adams, F.W.; Helms, W.R. Evaluation of Small Mass Spectrometer Systems for Permanent Gas Analysis. J. Am. Soc. Mass Spectrom. 2002, 13, 1004–1012.

    CAS  Google Scholar 

  15. Hu, Q.; Noll, R.J.; Li, H.; Makarov, A.; Hardman, M.; Cooks, R.G. The Orbitrap: A New Mass Spectrometer. J. Mass Spectrom. 2005, 40, 430–443.

    CAS  Google Scholar 

  16. Wiley, W.C.; McLaren, I.H. Time-of- Flight Mass Spectrometer With Improved Resolution. Rev. Sci. Instrum. 1955, 26, 1150–1157.

    CAS  Google Scholar 

  17. Stephens, W.E. A Pulsed Mass Spectrometer With Time Dispersion. Phys. Rev. 1946, 69, 691.

    CAS  Google Scholar 

  18. Cameron, A.E.; Eggers, D.F. An Ion "Velocitron". Rev. Sci. Instrum. 1948, 19, 605–607.

    CAS  Google Scholar 

  19. Wolff, M.M.; Stephens, W.E. A Pulsed Mass Spectrometer With Time Dispersion. Rev. Sci. Instrum. 1953, 24, 616–617.

    CAS  Google Scholar 

  20. Wiley, W.C.; McLaren, I.H. Reprint of: Time-of-Flight Mass Spectrometer With Improved Resolution. J. Mass Spectrom. 1997, 32, 4–11.

    CAS  Google Scholar 

  21. Harrington, D.B. The Time-of-Flight Mass Spectrometer, in Advances in Mass Spectrometry, Waldron, J.D., editor; Pergamon Press: Oxford, 1959; pp. 249–265.

    Google Scholar 

  22. Gohlke, R.S.; McLafferty, F.W. Early Gas Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 367–371.

    CAS  Google Scholar 

  23. Guilhaus, M. The Return of Time-of- Flight to Analytical Mass Spectrometry. Adv. Mass Spectrom. 1995, 13, 213–226.

    CAS  Google Scholar 

  24. Guilhaus, M.; Mlynski, V.; Selby, D. Perfect Timing: Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1997, 11, 951–962.

    CAS  Google Scholar 

  25. Karas, M.; Hillenkamp, F. Laser Desorption Ionization of Proteins With Molecular Masses Exceeding 10000 Daltons. Anal. Chem. 1988, 60, 2299–2301.

    CAS  Google Scholar 

  26. Weickhardt, C.; Moritz, F.; Grotemeyer, J. Time-of-Flight Mass Spectrometry: State-of-the-Art in Chemical Analysis and Msolecular Science. Mass Spectrom. Rev. 1997, 15, 139–162.

    Google Scholar 

  27. Cotter, R.J. Time-of-Flight Mass Spectrometry: Instrumentation and Applications in Biological Research; American Chemical Soc.: Washington, DC, 1997.

    Google Scholar 

  28. Enke, C.G. The Unique Capabilities of Time-of-Flight Mass Analyzers. Adv. Mass Spectrom. 1998, 14, 197–219.

    Google Scholar 

  29. Fuerstenau, S.D.; Benner, W.H. Molecular Weight Determination of Megadalton DNA Electrospray Ions Using Charge Detection Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1528–1538.

    CAS  Google Scholar 

  30. Fuerstenau, S.D.; Benner, W.H.; Thomas, J.J.; Brugidou, C.; Bothner, B.; Suizdak, G. Mass Spectrometry of an Intact Virus. Angew. Chem., Int. Ed. 2001, 40, 541–544.

    CAS  Google Scholar 

  31. Vestal, M.L. Modern MALDI Time-of- Flight Mass Spectrometry. J. Mass Spectrom. 2009, 44, 303–317.

    CAS  Google Scholar 

  32. Guilhaus, M. Principles and Instrumentation in Time-of-Flight Mass Spectrometry. Physical and Instrumental Concepts. J. Mass Spectrom. 1995, 30, 1519–1532.

    CAS  Google Scholar 

  33. Ioanoviciu, D. Ion-Optical Solutions in Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 985–997.

    CAS  Google Scholar 

  34. Cotter, R.J. Time-of-Flight Mass Spectrometry for the Analysis of Biological Molecules. Anal. Chem. 1992, 64, 1027A–1039A.

    CAS  Google Scholar 

  35. Takach, E.J.; Hines, W.M.; Patterson, D.H.; Juhasz, P.; Falick, A.M.; Vestal, M.L.; Martin, S.A. Accurate Mass Measurements Using MALDI-TOF With De-Delayed Extraction. J.Prot.Chem. 1997, 16, 363–369.

    CAS  Google Scholar 

  36. Vestal, M.; Juhasz, P. Resolution and Mass Accuracy in Matrix-Assisted Laser Desorption Ionization-Time-of-Flight. J. Am. Soc. Mass Spectrom. 1998, 9, 892– 911.

    CAS  Google Scholar 

  37. Vestal, M.; Hayden, K. High Performance MALDI-TOF Mass Spectrometry for Proteomics. Int. J. Mass Spectrom. 2007, 268, 83–92.

    CAS  Google Scholar 

  38. Beavis, R.C.; Chait, B.T. Factors Affecting the Ultraviolet Laser Desorption of Proteins. Rapid Commun. Mass Spectrom. 1989, 3, 233–237.

    CAS  Google Scholar 

  39. Mamyrin, B.A. Laser Assisted Reflectron Time-of-Flight Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1994, 131, 1–19.

    CAS  Google Scholar 

  40. Schuerch, S.; Schaer, M.; Boernsen, K.O.; Schlunegger, U.P. Enhanced Mass Resolution in Matrix-Assisted Laser Desorption/ Ionization Linear Time-of- Flight Mass Spectrometry. Biol. Mass Spectrom. 1994, 23, 695–700.

    CAS  Google Scholar 

  41. Brown, R.S.; Lennon, J.J. Mass Resolution Improvement by Incorporation of Pulsed Ion Extraction in a Matrix- Assisted Laser Desorption/Ionization Linear Time-of-Flight Mass Spectrometer. Anal. Chem. 1995, 67, 1998–2003.

    CAS  Google Scholar 

  42. Colby, S.M.; King, T.B.; Reilly, J.P. Improving the Resolution of Matrix- Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry by Exploiting the Correlation Between Ion Position and Velocity. Rapid Commun. Mass Spectrom. 1994, 8, 865–868.

    CAS  Google Scholar 

  43. Whittal, R.M.; Li, L. High-Resolution Matrix-Assisted Laser Desorption- Ionization in a Linear Time-of-Flight Mass Spectrometer. Anal. Chem. 1995, 67, 1950–1954.

    CAS  Google Scholar 

  44. Vestal, M.L.; Juhasz, P.; Martin, S.A. Delayed Extraction Matrix-Assisted Laser Desorption Time-of-Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1044–1050.

    CAS  Google Scholar 

  45. Weaver, P.J.; Laures, A.M.F.; Wolff, J.C. Investigation of the Advanced Functionalities of a Hybrid Quadrupole Orthogonal Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2007, 21, 2415–2421.

    CAS  Google Scholar 

  46. Dawson, J.H.J.; Guilhaus, M. Orthogonal- Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1989, 3, 155–159.

    CAS  Google Scholar 

  47. Mirgorodskaya, O.A.; Shevchenko, A.A.; Chernushevich, I.V.; Dodonov, A.F.; Miroshnikov, A.I. Electrospray- Ionization Time-of-Flight Mass Spectrometry in Protein Chemistry. Anal. Chem. 1994, 66, 99–107.

    CAS  Google Scholar 

  48. Coles, J.; Guilhaus, M. Orthogonal Acceleration - a New Direction for Timeof- Flight Mass Spectrometry: Fast, Sensitive Mass Analysis for Continuous Ion Sources. Trends Anal. Chem. 1993, 12, 203–213.

    CAS  Google Scholar 

  49. Guilhaus, M.; Selby, D.; Mlynski, V. Orthogonal Acceleration Time-of-Flight Mass Spectrometry. Mass Spectrom. Rev. 2000, 19, 65–107.

    CAS  Google Scholar 

  50. Selby, D.S.; Mlynski, V.; Guilhaus, M. A 20 KV Orthogonal Acceleration Timeof- Flight Mass Spectrometer for Matrix- Assisted Laser Desorption/Ionization. Int. J. Mass Spectrom. 2001, 210/211, 89–100.

    CAS  Google Scholar 

  51. Selditz, U.; Nilsson, S.; Barnidge, D.; Markides, K.E. ESI/TOF-MS Detection for Microseparation Techniques. Chimia 1999, 53, 506–510.

    CAS  Google Scholar 

  52. Charles, L. Influence of Internal Standard Charge State on the Accuracy of Mass Measurements in Orthogonal Acceleration Time-of-Flight Mass Spectrometers. Rapid Commun. Mass Spectrom. 2008, 22, 151–155.

    CAS  Google Scholar 

  53. Guo, C.; Huang, Z.; Gao, W.; Nian, H.; Chen, H.; Dong, J.; Shen, G.; Fu, J.; Zhou, Z. A Homemade High-Resolution Orthogonal-Injection Time-of-Flight Mass Spectrometer With a Heated Capillary Inlet. Rev. Sci. Instrum. 2008, 79013109–1-013109/8.

    Google Scholar 

  54. Prazen, B.J.; Bruckner, C.A.; Synovec, R.E.; Kowalski, B.R. Enhanced Chemical Analysis Using Parallel Column Gas Chromatography With Single-Detector Time-of-Flight Mass Spectrometry and Chemometric Analysis. Anal. Chem. 1999, 71, 1093–1099.

    CAS  Google Scholar 

  55. Hirsch, R.; Ternes, T.A.; Bobeldijk, I.; Weck, R.A. Determination of Environmentally Relevant Compounds Using Fast GC/TOF-MS. Chimia 2001, 55, 19–22.

    CAS  Google Scholar 

  56. Hsu, C.S.; Green, M. Fragment-Free Accurate Mass Measurement of Complex Mixture Components by Gas Chromatography/ Field Ionization-Orthogonal Acceleration Time-of-Flight Mass Spectrometry: an Unprecedented Capability for Mixture Analysis. Rapid Commun. Mass Spectrom. 2001, 15, 236–239.

    CAS  Google Scholar 

  57. Chernushevich, I.V. Duty Cycle Improvement for a Quadrupole-Time-of- Flight Mass Spectrometer and Its Use for Precursor Ion Scans. Eur. J. Mass Spectrom. 2000, 6, 471–479.

    CAS  Google Scholar 

  58. Brock, A.; Rodriguez, N.; Zare, R.N. Hadamard Transform Time-of-Flight Mass Spectrometry. Anal. Chem. 1998, 70, 3735–3741.

    CAS  Google Scholar 

  59. Zare, R.N.; Fernandez, F.M.; Kimmel, J.R. Hadamard Transform Time-of- Flight Mass Spectrometry: More Signal, More of the Time. Angew.Chem., Int. Ed. 2003, 42, 30–35.

    CAS  Google Scholar 

  60. Trapp, O.; Kimmel, J.R.; Yoon, O.K.; Zuleta, I.A.; Fernandez, F.M.; Zare, R.N. Continuous Two-Channel Time-of- Flight Mass Spectrometric Detection of Electrosprayed Ions. Angew. Chem. , Int. Ed. 2004, 43, 6541–6544.

    CAS  Google Scholar 

  61. Brenton, A.G.; Krastev, T.; Rousell, D.J.; Kennedy, M.A.; Craze, A.S.; Williams, C.M. Improvement of the Duty Cycle of an Orthogonal Acceleration Time-of-Flight Mass Spectrometer Using Ion Gates. Rapid Commun. Mass Spectrom. 2007, 21, 3093–3102.

    CAS  Google Scholar 

  62. Colombo, M.; Sirtori, F.R.; Rizzo, V. A Fully Automated Method for Accurate Mass Determination Using High- Performance Liquid Chromatography With a Quadrupole/Orthogonal Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 2004, 18, 511–517.

    CAS  Google Scholar 

  63. Nier, A.O. The Development of a High Resolution Mass Spectrometer: a Reminiscence. J. Am. Soc. Mass Spectrom. 1991, 2, 447–452.

    CAS  Google Scholar 

  64. Nier, A.O. Some Reminiscences of Mass Spectrometry and the Manhattan Project. J. Chem. Educ. 1989, 66, 385–388.

    CAS  Google Scholar 

  65. Nier, A.O. Some Reflections on the Early Days of Mass Spectrometry at the University of Minnesota. Int. J. Mass Spectrom. Ion Proc. 1990, 100, 1–13.

    CAS  Google Scholar 

  66. Duckworth, H.E.; Barber, R.C.; Venkatasubramanian, V.S.Mass Spectroscopy; 2nd ed.;Cambridge University Press:Cambridge,1986.

    Google Scholar 

  67. Cooks, R.G.; Beynon, J.H.; Caprioli, R.M. Instrumentation, in Metastable Ions,Elsevier:Amsterdam,1973; pp.5–18.

    Google Scholar 

  68. Morrison, J.D. Ion Focusing, Mass Analysis, and Detection, in Gaseous Ion Chemistry and Mass Spectrometry, Futrell, J.H., editor; Wiley: New York, 1986; pp. 107–125.

    Google Scholar 

  69. Dempster, A.J. A New Method of Positive Ray Analysis. Phys. Rev. 1918, 11, 316–325.

    CAS  Google Scholar 

  70. Mattauch, J.; Herzog, R. Über Einen Neuen Massenspektrographen. Z. Phys. 1934, 89, 786–795.

    CAS  Google Scholar 

  71. Bainbridge, K.T.; Jordan, E.B. Mass- Spectrum Analysis. 1. The Mass Spectrograph. 2. The Existence of Isobars of Adjacent Elements. Phys. Rev. 1936, 50, 282–296.

    CAS  Google Scholar 

  72. Johnson, E.G.; Nier, A.O. Angular Aberrations in Sector Shaped Electromagnetic Lenses for Focusing Beams of Charged Particles. Phys. Rev. 1953, 91, 10–17.

    CAS  Google Scholar 

  73. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion Proc. 1995, 142, 211–240.

    CAS  Google Scholar 

  74. Morgan, R.P.; Beynon, J.H.; Bateman, R.H.; Green, B.N. The MM-ZAB-2F Double-Focussing Mass Spectrometer and MIKE Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1978, 28, 171–191.

    CAS  Google Scholar 

  75. Hintenberger, H.; König, L.A. Über Massenspektrometer Mit Vollständiger Doppelfokussierung Zweiter Ordnung. Z. Naturforsch. 1957, 12A, 443.

    CAS  Google Scholar 

  76. Guilhaus, M.; Boyd, R.K.; Brenton, A.G.; Beynon, J.H. Advantages of a Second Electric Sector on a Double- Focusing Mass Spectrometer of Reversed Configuration. Int. J. Mass Spectrom. Ion Proc. 1985, 67, 209–227.

    CAS  Google Scholar 

  77. Bill, J.C.; Green, B.N.; Lewis, I.A.S. A High Field Magnet With Fast Scanning Capabilities. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 147–150.

    CAS  Google Scholar 

  78. Matsuda, H. High-Resolution High- Transmission Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985, 66, 209– 215.

    CAS  Google Scholar 

  79. Matsuda, H. Double-Focusing Mass Spectrometers of Short Path Length. Int. J. Mass Spectrom. Ion Proc. 1989, 93, 315–321.

    CAS  Google Scholar 

  80. Paul, W. Elektromagnetische Käfige Für Neutrale Und Geladene Teilchen (Nobel- Vortrag). Angew. Chem. 1990, 102, 780–789.

    CAS  Google Scholar 

  81. Paul, W.Electromagnetic Traps for Charged and Neutral Particles, in Nobel Prize Lectures in Physics 1981-1990,World Scientific Publishing: Singapore,1993; pp.601–622.

    Google Scholar 

  82. Paul, W.; Steinwedel, H. A New Mass Spectrometer Without Magnetic Field. Z. Naturforsch. 1953, 8A, 448–450.

    CAS  Google Scholar 

  83. Paul, W.; Raether, M. Das Elektrische Massenfilter. Z. Phys. 1955, 140, 262– 273.

    Google Scholar 

  84. Lawson, G.; Todd, J.F.J. Radio- Frequency Quadrupole Mass Spectrometers. Chem. Brit. 1972, 8, 373–380.

    CAS  Google Scholar 

  85. Dawson, P.H.Quadrupole Mass Spectrometry and Its Applications; Elsevier:New York,1976.

    Google Scholar 

  86. Dawson, P.H. Quadrupole Mass Analyzers: Performance, Design and Some Recent Applications. Mass Spectrom. Rev. 1986, 5, 1–37.

    CAS  Google Scholar 

  87. Douglas, D.J. Linear Quadrupoles in Mass Spectrometry. Mass Spectrom. Rev. 2009, 28, 937–960.

    CAS  Google Scholar 

  88. Blaum, K.; Geppert, C.; Müller, P.; Nörtershäuser, W.; Otten, E.W.; Schmitt, A.; Trautmann, N.; Wendt, K.; Bushaw, B.A. Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998, 181, 67–87.

    CAS  Google Scholar 

  89. Amad, M.H.; Houk, R.S. High- Resolution Mass Spectrometry With a Multiple Pass Quadrupole Mass Analyzer. Anal. Chem. 1998, 70, 4885–4889.

    CAS  Google Scholar 

  90. Liyu, Y.; Amad, M.H.; Winnik, W.M.; Schoen, A.E.; Schweingruber, H.; Mylchreest, I.; Rudewicz, P.J. Investigation of an Enhanced Resolution Triple Quadrupole Mass Spectrometer for High- Throughput Liquid Chromatography/ Tandem Mass Spectrometry Assays. Rapid Commun. Mass Spectrom. 2002, 16, 2060–2066.

    Google Scholar 

  91. Denison, D.R. Operating Parameters of a Quadrupole in a Grounded Cylindrical Housing. J.Vac. Sci.Technol. 1971, 8, 266–269.

    CAS  Google Scholar 

  92. Dawson, P.H.; Whetten, N.R. Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields. II. Quadrupole Mass Filter and the Monopole Mass Spectrometer. Int. J. Mass Spectrom.Ion Phys. 1969, 3, 1–12.

    CAS  Google Scholar 

  93. Brubaker, W.M. Comparison of Quadrupole Mass Spectrometers With Round and Hyperbolic Rods. J.Vac.Sci.Technol. 1967, 4, 326.

    Google Scholar 

  94. Gibson, J.R.; Taylor, S. Prediction of Quadrupole Mass Filter Performance for Hyperbolic and Circular Cross Section Electrodes. Rapid Commun. Mass Spectrom. 2000, 14, 1669–1673.

    CAS  Google Scholar 

  95. Chen, W.; Collings, B.A.; Douglas, D.J. High-Resolution Mass Spectrometry With a Quadrupole Operated in the Fourth Stability Region. Anal. Chem. 2000, 72, 540–545.

    CAS  Google Scholar 

  96. Douglas, D.J.; Frank, A.J.; Mao, D. Linear Ion Traps in Mass Spectrometry. Mass Spectrom.Rev. 2005, 24, 1–29.

    CAS  Google Scholar 

  97. Giles, K.; Pringle, S.D.; Worthington, K.R.; Little, D.; Wildgoose, J.L.; Bateman, R.H. Applications of a Traveling Wave-Based Radio-Frequency-Only Stacked Ring Ion Guide. Rapid Commun. Mass Spectrom. 2004, 18, 2401–2414.

    CAS  Google Scholar 

  98. Huang, Y.; Guan, S.; Kim, H.S.; Marshall, A.G. Ion Transport Through a Strong Magnetic Field Gradient by Radio Frequency-Only Octupole Ion Guides. Int. J. Mass Spectrom.Ion Proc. 1996, 152, 121–133.

    CAS  Google Scholar 

  99. Douglas, D.J.; French, J.B. Collisional Focusing Effects in Radiofrequency Quadrupoles. J. Am. Soc. Mass Spectrom. 1992, 3, 398–408.

    CAS  Google Scholar 

  100. Tolmachev, A.V.; Udseth, H.R.; Smith, R.D. Radial Stratification of Ions As a Function of Mass to Charge Ratio in Collisional Cooling Radio Frequency Multipoles Used As Ion Guides or Ion Traps. Rapid Commun. Mass Spectrom. 2000, 14, 1907–1913.

    CAS  Google Scholar 

  101. Collings, B.A.; Campbell, J.M.; Mao, D.; Douglas, D.J. A Combined Linear Ion Trap Time-of-Flight System With Improved Performance and MSn Capabilities. Rapid Commun. Mass Spectrom. 2001, 15, 1777–1795.

    CAS  Google Scholar 

  102. Douglas, D.J. Applications of Collision Dynamics in Quadrupole Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1998, 9, 101–113.

    CAS  Google Scholar 

  103. Thomson, B.A. 1997 McBryde Medal Award Lecture Radio Frequency Quadrupole Ion Guides in Modern Mass Spectrometry. Can.J. Chem. 1998, 76, 499–505.

    CAS  Google Scholar 

  104. Lock, C.M.; Dyer, E. Characterization of High Pressure Quadrupole Collision Cells Possessing Direct Current Axial Fields. Rapid Commun. Mass Spectrom. 1999, 13, 432–448.

    CAS  Google Scholar 

  105. Lock, C.M.; Dyer, E. Simulation of Ion Trajectories Through a High Pressure Radio Frequency Only Quadrupole Collision Cell by SIMION 6.0. Rapid Commun. Mass Spectrom. 1999, 13, 422–431.

    CAS  Google Scholar 

  106. Adlhart, C.; Hinderling, C.; Baumann, H.; Chen, P. Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry. J. Am. Chem.Soc. 2000, 122, 8204–8214.

    CAS  Google Scholar 

  107. Mao, D.; Douglas, D.J. H/D Exchange of Gas Phase Bradykinin Ions in a Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003, 14, 85–94.

    CAS  Google Scholar 

  108. Hager, J.W. A New Linear Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2002, 16, 512–526.

    CAS  Google Scholar 

  109. Schwartz, J.C.; Senko, M.W.; Syka, J.E.P. A Two-Dimensional Quadrupole Ion Trap Mass Spectrometer. J.Am.Soc. Mass Spectrom. 2002, 13, 659–669.

    CAS  Google Scholar 

  110. Hofstadler, S.A.; Sannes-Lowery, K.A.; Griffey, R.H. Enhanced Gas-Phase Hydrogen- Deuterium Exchange of Oligonucleotide and Protein Ions Stored in an External Multipole Ion Reservoir. J. Mass Spectrom. 2000, 35, 62–70.

    CAS  Google Scholar 

  111. Mao, D.; Ding, C.; Douglas, D.J. Hydrogen/ Deuterium Exchange of Myoglobin Ions in a Linear Quadrupole Ion Trap. Rapid Commun. Mass Spectrom. 2002, 16, 1941–1945.

    CAS  Google Scholar 

  112. Koizumi, H.; Whitten, W.B.; Reilly, P.T.A. Trapping of Intact, Singly- Charged, Bovine Serum Albumin Ions Injected From the Atmosphere With a 10-cm Diameter, Frequency-Adjusted Linear Quadrupole Ion Trap. J.Am.Soc. Mass Spectrom. 2008, 19, 1942–1947.

    CAS  Google Scholar 

  113. Collings, B.A.; Scott, W.R.; Londry, F.A. Resonant Excitation in a Low- Pressure Linear Ion Trap. J.Am.Soc. Mass Spectrom. 2003, 14, 622–634.

    CAS  Google Scholar 

  114. Aebersold, R.; Mann, M. Mass Spectrometry- Based Proteomics. Nature 2003, 422, 198–207.

    CAS  Google Scholar 

  115. Hopfgartner, G.; Husser, C.; Zell, M. Rapid Screening and Characterization of Drug Metabolites Using a New Quadrupole- Linear Ion Trap Mass Spectrometer. J. Mass Spectrom. 2003, 38, 138–150.

    CAS  Google Scholar 

  116. Hager, J.W. Recent Trends in Mass Spectrometer Development. Anal.Bioanal. Chem. 2004, 378, 845–850.

    CAS  Google Scholar 

  117. Welling, M.; Schuessler, H.A.; Thompson, R.I.; Walther, H. Ion/Molecule Reactions, Mass Spectrometry and Optical Spectroscopy in a Linear Ion Trap. Int. J. Mass Spectrom.Ion Proc. 1998, 172, 95–114.

    CAS  Google Scholar 

  118. Londry, F.A.; Hager, J.W. Mass Selective Axial Ion Ejection From a Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003, 14, 1130–1147.

    CAS  Google Scholar 

  119. March, R.E.; Todd, J.F.J. Quadrupole Ion Trap Mass Spectrometry; Wiley: Hoboken, 2005.

    Google Scholar 

  120. Mass Spectrometry in Drug Metabolism and Pharmacokinetics; Ramanathan, R., editor; Wiley: Hoboken, 2009.

    Google Scholar 

  121. Dahl, D.A.; Delmore, J.E.; Appelhans, A.D. SIMION PC/PS2 Electrostatic Lens Design Program. Rev. Sci. Instrum. 1990, 61, 607–609.

    CAS  Google Scholar 

  122. Dahl, D.A. SIMION for the Personal Computer in Reflection. Int. J. Mass Spectrom. 2000, 200, 3–25.

    CAS  Google Scholar 

  123. Magparangalan, D.P.; Garrett, T.J.; Drexler, D.M.; Yost, R.A. Analysis of Large Peptides by MALDI Using a Linear Quadrupole Ion Trap With Mass Range Extension. Anal. Chem. 2010, 82, 930–934.

    CAS  Google Scholar 

  124. March, R.E.; Hughes, R.J. Quadrupole Storage Mass Spectrometry; Wiley: Chichester, 1989.

    Google Scholar 

  125. March, R.E. Quadrupole Ion Trap Mass Spectrometry: Theory, Simulation, Recent Developments and Applications. Rapid Commun. Mass Spectrom. 1998, 12, 1543–1554.

    CAS  Google Scholar 

  126. March, R.E. Quadrupole Ion Trap Mass Spectrometry. A View at the Turn of the Century. Int. J. Mass Spectrom. 2000, 200, 285–312.

    CAS  Google Scholar 

  127. Stafford, G., Jr. Ion Trap Mass Spectrometry: a Personal Perspective. J.Am. Soc. Mass Spectrom. 2002, 13, 589–596.

    CAS  Google Scholar 

  128. March, R.E. Quadrupole Ion Traps. Mass Spectrom.Rev. 2009, 28, 961–989.

    CAS  Google Scholar 

  129. Practical Aspects of Ion Trap Mass Spectrometry; March, R.E.; Todd, J.F.J., editors; CRC Press: Boca Raton, 1995; Vol. 1 Fundamentals of Ion Trap Mass Spectrometry.

    Google Scholar 

  130. Practical Aspects of Ion Trap Mass Spectrometry; March, R.E.; Todd, J.F.J., editors; CRC Press: Boca Raton, 1995; Vol. 2, Ion Trap Instrumentation.

    Google Scholar 

  131. Practical Aspects of Ion Trap Mass Spectrometry; March, R.E.; Todd, J.F.J., editors; CRC Press: Boca Raton, 1995; Vol. 3 Chemical, Environmental, and iomedical Applications.

    Google Scholar 

  132. Yoshinari, K. Theoretical and Numerical Analysis of the Behavior of Ions Injected into a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2000, 14, 215–223.

    CAS  Google Scholar 

  133. Alheit, R.; Kleinadam, S.; Vedel, F.; Vedel, M.; Werth, G. Higher Order Non- Linear Resonances in a Paul Trap. Int.J. Mass Spectrom. Ion Proc. 1996, 154, 155–169.

    CAS  Google Scholar 

  134. Stafford, G.C., Jr.; Kelley, P.E.; Syka, J.E.P.; Reynolds, W.E.; Todd, J.F.J. Recent Improvements in and Analytical Applications of Advanced Ion Trap Technology. Int. J. Mass Spectrom.Ion Proc. 1984, 60, 85–98.

    CAS  Google Scholar 

  135. Wu, H.F.; Brodbelt, J.S. Effects of Collisional Cooling on Ion Detection in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom.Ion Proc. 1992, 115, 67–81.

    CAS  Google Scholar 

  136. Plass, W.R.; Li, H.; Cooks, R.G. Theory, Simulation and Measurement of Chemical Mass Shifts in RF Quadrupole Ion Traps. Int. J. Mass Spectrom. 2003, 228, 237–267.

    CAS  Google Scholar 

  137. Wuerker, R.F.; Shelton, H.; Langmuir, R.V. Electrodynamic Containment of Charged Particles. J.Appl.Phys. 1959, 30, 342–349.

    Google Scholar 

  138. Ehlers, M.; Schmidt, S.; Lee, B.J.; Grotemeyer, J. Design and Set-Up of an External Ion Source Coupled to a Quadrupole- Ion-Trap Reflectron-Time-of-Flight Hybrid Instrument. Eur.J. Mass Spectrom. 2000, 6, 377–385.

    CAS  Google Scholar 

  139. Forbes, M.W.; Sharifi, M.; Croley, T.; Lausevic, Z.; March, R.E. Simulation of Ion Trajectories in a Quadrupole Ion Trap: a Comparison of Three Simulation Programs. J. Mass Spectrom. 1999, 34, 1219–1239.

    CAS  Google Scholar 

  140. Coon, J.J.; Steele, H.A.; Laipis, P.; Harrison, W.W. Laser Desorption-Atmospheric Pressure Chemical Ionization: A Novel Ion Source for the Direct Coupling of Polyacrylamide Gel Electrophoresis to Mass Spectrometry. J. Mass Spectrom. 2002, 37, 1163–1167.

    CAS  Google Scholar 

  141. Nappi, M.; Weil, C.; Cleven, C.D.; Horn, L.A.; Wollnik, H.; Cooks, R.G. Visual Representations of Simulated Three-Dimensional Ion Trajectories in an Ion Trap Mass Spectrometer. Int.J. Mass Spectrom.Ion Proc. 1997, 161, 77–85.

    CAS  Google Scholar 

  142. Dawson, P.H.; Hedman, J.W.; Whetten, N.R. Mass Spectrometer. Rev. Sci. Instrum. 1969, 40, 1444–1450.

    CAS  Google Scholar 

  143. Dawson, P.H.; Whetten, N.R. Miniature Mass Spectrometer. Anal. Chem. 1970, 42, 103A-108A.

    CAS  Google Scholar 

  144. Griffiths, I.W.; Heesterman, P.J.L. Quadrupole Ion Store (QUISTOR) Mass Spectrometry. Int. J. Mass Spectrom.Ion Proc. 1990, 99, 79–98.

    CAS  Google Scholar 

  145. Griffiths, I.W. Recent Advances in Ion- Trap Technology. Rapid Commun. Mass Spectrom. 1990, 4, 69–73.

    CAS  Google Scholar 

  146. Kelley, P.E.; Stafford, G.C., Jr.; Syka, J.E.P.; Reynolds, W.E.; Louris, J.N.; Todd, J.F.J. New Advances in the Operation of the Ion Trap Mass Spectrometer, 1986; Chapter 10B, pp. 869–870.

    Google Scholar 

  147. Splendore, M.; Lausevic, M.; Lausevic, Z.; March, R.E. Resonant Excitation and/or Ejection of Ions Subjected to DC and RF Fields in a Commercial Quadrupole Ion Trap. Rapid Commun. Mass Spectrom. 1997, 11, 228–233.

    CAS  Google Scholar 

  148. Creaser, C.S.; Stygall, J.W. A Comparison of Overtone and Fundamental Resonances for Mass Range Extension by Resonance Ejection in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 1999, 190/191, 145–151.

    CAS  Google Scholar 

  149. Williams, J.D.; Cox, K.A.; Cooks, R.G.; McLuckey, S.A.; Hart, K.J.; Goeringer, D.E. Resonance Ejection Ion Trap Mass Spectrometry and Nonlinear Field Contributions: The Effect of Scan Direction on Mass Resolution. Anal. Chem. 1994, 66, 725–729.

    CAS  Google Scholar 

  150. Ding, L.; Sudakov, M.; Brancia, F.L.; Giles, R.; Kumashiro, S. A Digital Ion Trap Mass Spectrometer Coupled With Atmospheric Pressure Ion Sources. J. Mass Spectrom. 2004, 39, 471–484.

    CAS  Google Scholar 

  151. Cooks, R.G.; Amy, J.W.; Bier, M.; Schwartz, J.C.; Schey, K. New Mass Spectrometers, 1989; Chapter 11A, pp. 33–52.

    Google Scholar 

  152. Kaiser, R.E., Jr.; Louris, J.N.; Amy, J.W.; Cooks, R.G. Extending the Mass Range of the Quadrupole Ion Trap Using Axial Modulation. Rapid Commun. Mass Spectrom. 1989, 3, 225–229.

    CAS  Google Scholar 

  153. Weber-Grabau, M.; Kelley, P.; Bradshaw, S.; Hoekman, D.; Evans, S.; Bishop, P. Recent Advances in Ion-Trap Technology, 1989; Chapter 11A, pp. 152–153.

    Google Scholar 

  154. Siethoff, C.; Wagner-Redeker, W.; Schäfer, M.; Linscheid, M. HPLC-MS With an Ion Trap Mass Spectrometer. Chimia 1999, 53, 484–491.

    CAS  Google Scholar 

  155. Eades, D.M.; Johnson, J.V.; Yost, R.A. Nonlinear Resonance Effects During Ion Storage in a Quadrupole Ion Trap. J.Am. Soc.Mass Spectrom. 1993, 4, 917–929.

    CAS  Google Scholar 

  156. Makarov, A.A. Resonance Ejection From the Paul Trap: A Theoretical Treatment Incorporating a Weak Octapole Field. Anal. Chem. 1996, 68, 4257–4263.

    CAS  Google Scholar 

  157. Doroshenko, V.M.; Cotter, R.J. Losses of Ions During Forward and Reverse Scans in a Quadrupole Ion Trap Mass Spectrometer and How to Reduce Them. J. Am. Soc. Mass Spectrom. 1997, 8, 1141–1146.

    CAS  Google Scholar 

  158. von Busch, F.; Paul, W. Nonlinear Resonances in Electric Mass-Filters As a Consequence of Field Irregularities. Z. Phys. 1961, 164, 588–594.

    Google Scholar 

  159. Dawson, P.H.; Whetten, N.R. Nonlinear Resonances in Quadrupole Mass Spectrometers Due to Imperfect Fields.I.Quadrupole Ion Trap. Int. J. Mass Spectrom. Ion Phys. 1969, 2, 45–59.

    CAS  Google Scholar 

  160. Wang, Y.; Franzen, J. The Non-Linear Ion Trap. Part 3.Multipole Components in Three Types of Practical Ion Trap. Int. J. Mass Spectrom. Ion Proc. 1994, 132, 155–172.

    CAS  Google Scholar 

  161. Franzen, J. The Non-Linear Ion Trap.Part 5.Nature of Non-Linear Resonances and Resonant Ion Ejection. Int. J. Mass Spectrom.Ion Proc. 1994, 130, 15–40.

    CAS  Google Scholar 

  162. Berton, A.; Traldi, P.; Ding, L.; Brancia, F.L. Mapping the Stability Diagram of a Digital Ion Trap (DIT) Mass Spectrometer Varying the Duty Cycle of the Trapping Rectangular Waveform. J. Am.Soc. Mass Spectrom. 2008, 19, 620–625.

    CAS  Google Scholar 

  163. Ding, L.; Kumashiro, S. Ion Motion in the Rectangular Wave Quadrupole Field and Digital Operation Mode of a Quadrupole Ion Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 2006, 20, 3–8.

    CAS  Google Scholar 

  164. Li, X.; Jiang, G.; Luo, C.; Xu, F.; Wang, Y.; Ding, L.; Ding, C. Ion Trap Array Mass Analyzer: Structure and Performance. Anal. Chem. 2009, 81, 4840–4846.

    CAS  Google Scholar 

  165. Brodbelt, J.S.; Louris, J.N.; Cooks, R.G. Chemical Ionization in an Ion Trap Mass Spectrometer. Anal. Chem. 1987, 59, 1278–1285.

    CAS  Google Scholar 

  166. Doroshenko, V.M.; Cotter, R.J. Injection of Externally Generated Ions into an Increasing Trapping Field of a Quadrupole Ion Trap Mass Spectrometer. J. Mass Spectrom. 1997, 31, 602–615.

    Google Scholar 

  167. Van Berkel, G.J.; Glish, G.L.; McLuckey, S.A. Electrospray Ionization Combined With Ion Trap Mass Spectrometry. Anal. Chem. 1990, 62, 1284–1295.

    Google Scholar 

  168. Wang, Y.; Schubert, M.; Ingendoh, A.; Franzen, J. Analysis of Non-Covalent Protein Complexes Up to 290 kDa Using Electrospray Ionization and Ion Trap Mass Spectrometry. Rapid Commun. Mass Spectrom. 2000, 14, 12–17.

    Google Scholar 

  169. Lawrence, E.O.; Livingston, M.S. The Production of High-Speed Light Ions Without the Use of High Voltages. Phys.Rev. 1932, 40, 19–35.

    CAS  Google Scholar 

  170. Comisarow, M.B.; Marshall, A.G. The Early Development of Fourier Transform Ion Cyclotron Resonance (FT-ICR) Spectroscopy. J. Mass Spectrom. 1996, 31, 581–585.

    CAS  Google Scholar 

  171. Smith, L.G. New Magnetic Period Mass Spectrometer. Rev. Sci. Instrum. 1951, 22, 115–116.

    CAS  Google Scholar 

  172. Sommer, H.; Thomas, H.A.; Hipple, J.A. Measurement of E/M by Cyclotron Resonance. Phys.Rev. 1951, 82, 697–702.

    CAS  Google Scholar 

  173. Baldeschwieler, J.D. Ion Cyclotron Resonance Spectroscopy. Science 1968, 159, 263–273.

    CAS  Google Scholar 

  174. Analytical Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry; Assamoto, B., editor; VCH: Weinheim, 1991.

    Google Scholar 

  175. Comisarow, M.B.; Marshall, A.G. Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem.Phys.Lett. 1974, 25, 282–283.

    CAS  Google Scholar 

  176. Comisarow, M.B.; Marshall, A.G. Frequency- Sweep Fourier Transform Ion Cyclotron Resonance Spectroscopy. Chem.Phys.Lett. 1974, 26, 489–490.

    CAS  Google Scholar 

  177. Wanczek, K.-P. ICR Spectrometry - A Review of New Developments in Theory, Instrumentation and Applications. I.1983–1986. Int. J. Mass Spectrom.Ion Proc. 1989, 95, 1–38.

    CAS  Google Scholar 

  178. Marshall, A.G.; Grosshans, P.B. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: the Teenage Years. Anal. Chem. 1991, 63, 215A–229A.

    CAS  Google Scholar 

  179. Amster, I.J. Fourier Transform Mass Spectrometry. J. Mass Spectrom. 1996, 31, 1325–1337.

    CAS  Google Scholar 

  180. Dienes, T.; Salvador, J.P.; Schürch, S.; Scott, J.R.; Yao, J.; Cui, S.; Wilkins, C.L. Fourier Transform Mass Spectrometry- Advancing Years (1992-Mid.1996). Mass Spectrom. Rev. 1996, 15, 163–211.

    CAS  Google Scholar 

  181. Marshall, A.G. Milestones in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Technique Development. Int. J. Mass Spectrom. 2000, 200, 331–356.

    CAS  Google Scholar 

  182. Smith, R.D. Evolution of ESI-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance for Proteomics and Other Biological Applications. Int. J. Mass Spectrom. 2000, 200, 509–544.

    CAS  Google Scholar 

  183. Marshall, A.G.; Hendrickson, C.L.; Shi, S.D.H. Scaling MS Plateaus With High- Resolution FT-ICR-MS. Anal. Chem. 2002, 74, 252A–259A.

    CAS  Google Scholar 

  184. Schaub, T.M.; Hendrickson, C.L.; Horning, S.; Quinn, J.P.; Senko, M.W.; Marshall, A.G. High-Performance Mass Spectrometry: Fourier Transform Ion Cyclotron Resonance at 14.5 Tesla. Anal. Chem. 2008, 80, 3985–3990.

    CAS  Google Scholar 

  185. He, F.; Hendrickson, C.L.; Marshall, A.G. Baseline Mass Resolution of Peptide Isobars: A Record for Molecular Mass Resolution. Anal. Chem. 2001, 73, 647–650.

    CAS  Google Scholar 

  186. Bossio, R.E.; Marshall, A.G. Baseline Resolution of Isobaric Phosphorylated and Sulfated Peptides and Nucleotides by Electrospray Ionization FT-ICR-MS: Another Step Toward MS-Based Proteomics. Anal. Chem. 2002, 74, 1674–1679.

    CAS  Google Scholar 

  187. White, F.M.; Marto, J.A.; Marshall, A.G. An External Source 7 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer With Electrostatic Ion Guide. Rapid Commun. Mass Spectrom. 1996, 10, 1845–1849.

    CAS  Google Scholar 

  188. Marshall, A.G.; Hendrickson, C.L. Fourier Transform Ion Cyclotron Resonance Detection: Principles and Experimental Configurations. Int. J. Mass Spectrom. 2002, 215, 59–75.

    CAS  Google Scholar 

  189. Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: a Primer. Mass Spectrom. Rev. 1998, 17, 1–35.

    CAS  Google Scholar 

  190. Shi, S.D.H.; Drader, J.J.; Freitas, M.A.; Hendrickson, C.L.; Marshall, A.G. Comparison and Interconversion of the Two Most Common Frequency-to-Mass Calibration Functions for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Int. J. Mass Spectrom. 2000, 195/196, 591–598.

    CAS  Google Scholar 

  191. Nikolaev, E.N.; Gorshkov, M.V. Dynamics of Ion Motion in an Elongated Cylindrical Cell of an ICR Spectrometer and the Shape of the Signal Registered. Int. J. Mass Spectrom.Ion Proc. 1985, 64, 115–125.

    CAS  Google Scholar 

  192. Pan, Y.; Ridge, D.P.; Wronka, J.; Rockwood, A.L. Resolution Improvement by Using Harmonic Detection in an Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun. Mass Spectrom. 1987, 1, 120–121.

    CAS  Google Scholar 

  193. Derome, A.E. Modern NMR Techniques for Chemistry Research; Pergamon Press: Oxford, 1987.

    Google Scholar 

  194. Guan, S.; Marshall, A.G. Stored Waveform Inverse Fourier Transform (SWIFT) Ion Excitation in Trapped-Ion Mass Spectrometry: Theory and Applications. Int. J. Mass Spectrom.Ion Proc. 1996, 157/158, 5–37.

    CAS  Google Scholar 

  195. Caravatti, P.; Allemann, M. The Infinity Cell: a New Trapped-Ion Cell With Radiofrequency Covered Trapping Electrodes for FT-ICR-MS. Org. Mass Spectrom. 1991, 26, 514–518.

    CAS  Google Scholar 

  196. Huang, Y.; Li, G.-Z.; Guan, S.; Marshall, A.G. A Combined Linear Ion Trap for Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 962–969.

    CAS  Google Scholar 

  197. Guan, S.; Marshall, A.G. Ion Traps for Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Principles and Design of Geometric and Electric Configurations. Int. J. Mass Spectrom. Ion Proc. 1995, 146/147, 261–296.

    CAS  Google Scholar 

  198. Schweikhard, L.; Ziegler, J.; Bopp, H.; Luetzenkirchen, K. The Trapping Condition and a New Instability of the Ion Motion in the Ion Cyclotron Resonance Trap. Int. J. Mass Spectrom.Ion Proc. 1995, 141, 77–90.

    CAS  Google Scholar 

  199. Comisarow, M.B.; Marshall, A.G. Theory of Fourier Transform Ion Cyclotron Resonance Mass Spectroscopy. I. Fundamental Equations and Low-Pressure Line Shape. J.Chem.Phys. 1976, 64, 110–119.

    CAS  Google Scholar 

  200. Comisarow, M.B. Signal Modeling for Ion Cyclotron Resonance. J. Chem. Phys. 1978, 69, 4097–4104.

    CAS  Google Scholar 

  201. Hughey, C.A.; Rodgers, R.P.; Marshall, A.G. Resolution of 11,000 Compositionally Distinct Components in a Single Electrospray Ionization FT-ICR Mass Spectrum of Crude Oil. Anal. Chem. 2002, 74, 4145–4149.

    CAS  Google Scholar 

  202. Solouki, T.; Emmet, M.R.; Guan, S.; Marshall, A.G. Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI FTICR Mass Spectrometry. Anal. Chem. 1997, 69, 1163–1168.

    CAS  Google Scholar 

  203. Wu, Z.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G. Composition of Explosives by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2002, 74, 1879–1883.

    CAS  Google Scholar 

  204. Wang, Y.; Shi, S.D.H.; Hendrickson, C.L.; Marshall, A.G. Mass-Selective Ion Accumulation and Fragmentation in a Linear Octopole Ion Trap External to a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Int. J. Mass Spectrom. 2000, 198, 113–120.

    CAS  Google Scholar 

  205. Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High- Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162.

    CAS  Google Scholar 

  206. Scigelova, M.; Makarov, A. Orbitrap Mass Analyzer - Overview and Applications in Proteomics. Practical Proteomics 2006, 6, 16–21.

    Google Scholar 

  207. Makarov, A.; Denisov, E.; Lange, O.; Horning, S. Dynamic Range of Mass Accuracy in LTQ Orbitrap Hybrid Mass Spectrometer. J.Am.Chem. Soc. 2006, 17, 977–982.

    CAS  Google Scholar 

  208. Makarov, A.; Denisov, E.; Kholomeev, A.; Balschun, W.; Lange, O.; Strupat, K.; Horning, S. Performance Evaluation of a Hybrid Linear Ion Trap/Orbitrap Mass Spectrometer. Anal. Chem. 2006, 78, 2113–2120.

    CAS  Google Scholar 

  209. Macek, B.; Waanders, L.F.; Olsen, J.V.; Mann, M. Top-Down Protein Sequencing and MS3 on a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer. Mol.Cell.Proteomics 2006, 5, 949–958.

    CAS  Google Scholar 

  210. Perry, R.H.; Cooks, R.G.; Noll, R.J. Orbitrap Mass Spectrometry: Instrumentation, Ion Motion and Applications. Mass Spectrom. Rev. 2008, 27, 661–699.

    CAS  Google Scholar 

  211. Kingdon, K.H. A Method for Neutralizing the Electron Space Charge by Positive Ionization at Very Low Pressures. Phys.Rev. 1923, 21, 408–418.

    CAS  Google Scholar 

  212. Knight, R.D. Storage of Ions From Laser- Produced Plasmas. Appl. Phys.Lett. 1981, 38, 221–223.

    CAS  Google Scholar 

  213. Oksman, P. A Fourier Transform Timeof- Flight Mass Spectrometer.A SIMION Calculation Approach. Int. J. Mass Spectrom. Ion Proc. 1995, 141, 67–76.

    CAS  Google Scholar 

  214. Hardman, M.; Makarov, A.A. Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal. Chem. 2003, 75, 1699–1705.

    CAS  Google Scholar 

  215. Olsen, J.V.; de Godoy, L.M.F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts Per Million Mass Accuracy on an Orbitrap Mass Spectrometer Via Lock Mass Injection into a C-Trap. Mol. Cell. Proteomics 2005, 4, 2010–2021.

    CAS  Google Scholar 

  216. Perry, R.H.; Hu, Q.; Salazar, G.A.; Cooks, R.G.; Noll, R.J. Rephasing Ion Packets in the Orbitrap Mass Analyzer to Improve Resolution and Peak Shape. J. Am.Soc.Mass Spectrom. 2009, 20, 1397–1404.

    CAS  Google Scholar 

  217. Makarov, A.; Denisov, E. Dynamics of Ions of Intact Proteins in the Orbitrap Mass Analyzer. J. Am. Soc. Mass Spectrom. 2009, 20, 1486–1495.

    CAS  Google Scholar 

  218. Makarov, A.; Denisov, E.; Lange, O. Performance Evaluation of a High-Field Orbitrap Mass Analyzer. J.Am.Soc. Mass Spectrom. 2009, 20, 1391–1396.

    CAS  Google Scholar 

  219. Amy, J.W.; Baitinger, W.E.; Cooks, R.G. Building Mass Spectrometers and a Philosophy of Research. J.Am.Soc. Mass Spectrom. 1990, 1, 119–128.

    CAS  Google Scholar 

  220. Futrell, J.H. Development of Tandem Mass Spectrometry.One Perspective. Int. J. Mass Spectrom. 2000, 200, 495–508.

    CAS  Google Scholar 

  221. McLuckey, S.A.; Glish, G.L.; Cooks, R.G. Kinetic Energy Effects in Mass Spectrometry/Mass Spectrometry Using a Sector/Quadrupole Tandem Instrument. Int. J. Mass Spectrom. Ion Phys. 1981, 39, 219–230.

    CAS  Google Scholar 

  222. Glish, G.L.; McLuckey, S.A.; Ridley, T.Y.; Cooks, R.G. A New "Hybrid" Sector/ Quadrupole Mass Spectrometer for Mass Spectrometry/Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 157–177.

    CAS  Google Scholar 

  223. Bradley, C.D.; Curtis, J.M.; Derrick, P.J.; Wright, B. Tandem Mass Spectrometry of Peptides Using a Magnetic Sector/Quadrupole Hybrid-the Case for Higher Collision Energy and Higher Radio- Frequency Power. Anal. Chem. 1992, 64, 2628–2635.

    CAS  Google Scholar 

  224. Schoen, A.E.; Amy, J.W.; Ciupek, J.D.; Cooks, R.G.; Dobberstein, P.; Jung, G. A Hybrid BEQQ Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985, 65, 125–140.

    CAS  Google Scholar 

  225. Ciupek, J.D.; Amy, J.W.; Cooks, R.G.; Schoen, A.E. Performance of a Hybrid Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1985, 65, 141–157.

    CAS  Google Scholar 

  226. Louris, J.N.; Wright, L.G.; Cooks, R.G. New Scan Modes Accessed With a Hybrid Mass Spectrometer. Anal. Chem. 1985, 57, 2918–2924.

    CAS  Google Scholar 

  227. Loo, J.A.; Münster, H. Magnetic Sector- Ion Trap Mass Spectrometry With Electrospray Ionization for High Sensitivity Peptide Sequencing. Rapid Commun. Mass Spectrom. 1999, 13, 54–60.

    CAS  Google Scholar 

  228. Strobel, F.H.; Solouki, T.; White, M.A.; Russell, D.H. Detection of Femtomole and Sub-Femtomole Levels of Peptides by Tandem Magnetic Sector/Reflectron Time-of-Flight Mass Spectrometry and Matrix-Assisted Laser Desorption Ionization. J. Am. Soc. Mass Spectrom. 1991, 2, 91–94.

    CAS  Google Scholar 

  229. Bateman, R.H.; Green, M.R.; Scott, G.; Clayton, E. A Combined Magnetic Sector- Time-of-Flight Mass Spectrometer for Structural Determination Studies by Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 1995, 9, 1227–1233.

    CAS  Google Scholar 

  230. Aicher, K.P.; Müller, M.; Wilhelm, U.; Grotemeyer, J. Design and Setup of an Ion Trap-Reflectron-Time-of-Flight Mass Spectrometer. Eur. Mass Spectrom. 1995, 1, 331–340.

    CAS  Google Scholar 

  231. Wilhelm, U.; Aicher, K.P.; Grotemeyer, J. Ion Storage Combined With Reflectron Time-of-Flight Mass Spectrometry: Ion Cloud Motions As a Result of Jet- Cooled Molecules. Int. J. Mass Spectrom. Ion Proc. 1996, 152, 111–120.

    CAS  Google Scholar 

  232. Morris, H.R.; Paxton, T.; Dell, A.; Langhorne, J.; Berg, M.; Bordoli, R.S.; Hoyes, J.; Bateman, R.H. High Sensitivity Collisionally-Activated Decomposition Tandem Mass Spectrometry on a Novel Quadrupole/Orthogonal- Acceleration Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1996, 10, 889–896.

    CAS  Google Scholar 

  233. Shevchenko, A.; Chernushevich, I.V.; Ens, W.; Standing, K.G.; Thompson, B.; Wilm, M.; Mann, M. Rapid 'De Novo' Peptide Sequencing by a Combination of Nanoelectrospray, Isotopic Labeling and a Quadrupole/Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1997, 11, 1015–1024.

    CAS  Google Scholar 

  234. Hopfgartner, G.; Chernushevich, I.V.; Covey, T.; Plomley, J.B.; Bonner, R. Exact Mass Measurement of Product Ions for the Structural Elucidation of Drug Metabolites With a Tandem Quadrupole Orthogonal-Acceleration Timeof- Flight Mass Spectrometer. J.Am.Soc. Mass Spectrom. 1999, 10, 1305–1314.

    CAS  Google Scholar 

  235. Collins, D.C.; Lee, M.L. Developments in Ion Mobility Spectrometry-Mass Spectrometry. Anal.BioAnal. Chem. 2002, 372, 66–73.

    CAS  Google Scholar 

  236. Mukhopadhyay, R. IMS/MS: Its Time Has Come. Anal. Chem. 2008, 80, 7918–7920.

    CAS  Google Scholar 

  237. Bohrer, B.C.; Merenbloom, S.I.; Koeniger, S.L.; Hilderbrand, A.E.; Clemmer, D.E. Biomolecule Analysis by Ion Mobility Spectrometry. Ann. Rev.Anal. Chem. 2008, 1, 293–327.

    CAS  Google Scholar 

  238. Karasek, F.W. Drift-Mass Spectrometer. Res. Development 1970, 21, 25–27.

    CAS  Google Scholar 

  239. Karasek, F.W. Plasma Chromatograph. Res.Development 1970, 21, 34–37.

    CAS  Google Scholar 

  240. Karasek, F.W.; Cohen, M.J.; Carroll, D.I. Trace Studies of Alcohols in the Plasma Chromatograph-Mass Spectrometer. J.Chromatogr.Sci. 1971, 9, 390–392.

    CAS  Google Scholar 

  241. Kanu, A.B.; Dwivedi, P.; Tam, M.; Matz, L.; Hill, H.H., Jr. Ion Mobility- Mass Spectrometry. J. Mass Spectrom. 2008, 43, 1–22.

    CAS  Google Scholar 

  242. Pringle, S.D.; Giles, K.; Wildgoose, J.L.; Williams, J.P.; Slade, S.E.; Thalassinos, K.; Bateman, R.H.; Bowers, M.T.; Scrivens, J.H. An Investigation of the Mobility Separation of Some Peptide and Pro and Protein Ions Using a New Hybrid Quadrupole/Travelling Wave IMS/Oa- ToF Instrument. Int. J. Mass Spectrom. 2007, 261, 1–12.

    CAS  Google Scholar 

  243. Platzner, I.T.; Habfast, K.; Walder, A.J.; Goetz, A. Modern Isotope Ratio Mass Spectrometry; Platzner, I.T., editor; Wiley: Chichester, 1997.

    Google Scholar 

  244. Stanton, H.E.; Chupka, W.A.; Inghram, M.G. Electron Multipliers in Mass Spectrometry; Effect of Molecular Structure. Rev. Sci. Instrum. 1956, 27, 109.

    CAS  Google Scholar 

  245. Frank, M. Mass Spectrometry With Cryogenic Detectors. Nucl. Instrum.Methods Phys.Res.,A 2000, 444, 375–384.

    CAS  Google Scholar 

  246. Allen, J.S. An Improved Electron- Multiplier Particle Counter. Rev. Sci. Instrum. 1947, 18, 739–749.

    CAS  Google Scholar 

  247. Wang, G.H.; Aberth, W.; Falick, A.M. Evidence Concerning the Identity of Secondary Particles in Post-Acceleration Detectors. Int. J. Mass Spectrom. Ion Proc. 1986, 69, 233–237.

    CAS  Google Scholar 

  248. Busch, K.L. The Electron Multiplier. Spectroscopy 2000, 15, 28–33.

    CAS  Google Scholar 

  249. Schröder, E. Massenspektrometrie - Begriffe und Definitionen; Springer-Verlag: Heidelberg, 1991.

    Google Scholar 

  250. Boerboom, A.J.H. Array Detection of Mass Spectra, a Comparison With Conventional Detection Methods. Org.Mass Spectrom. 1991, 26, 929–935.

    CAS  Google Scholar 

  251. Kurz, E.A. Channel Electron Multipliers. Am. Laboratory 1979, 11, 67–82.

    CAS  Google Scholar 

  252. Wiza, J.L. Microchannel Plate Detectors. Nucl. Instrum. Methods 1979, 162, 587–601.

    CAS  Google Scholar 

  253. Laprade, B.N.; Labich, R.J. Microchannel Plate-Based Detectors in Mass Spectrometry. Spectroscopy 1994, 9, 26–30.

    CAS  Google Scholar 

  254. Alexandrov, M.L.; Gall, L.N.; Krasnov, N.V.; Lokshin, L.R.; Chuprikov, A.V. Discrimination Effects in Inorganic Ion- Cluster Detection by Secondary-Electron Multiplier in Mass Spectrometry Experiments. Rapid Commun. Mass Spectrom. 1990, 4, 9–12.

    CAS  Google Scholar 

  255. Geno, P.W.; Macfarlane, R.D. Secondary Electron Emission Induced by Impact of Low-Velocity Molecular Ions on a Microchannel Plate. Int. J. Mass Spectrom. Ion Proc. 1989, 92, 195–210.

    CAS  Google Scholar 

  256. Hedin, H.; Håkansson, K.; Sundqvist, B.U.R. On the Detection of Large Organic Ions by Secondary Electron Production. Int. J. Mass Spectrom. Ion Proc. 1987, 75, 275–289.

    CAS  Google Scholar 

  257. Hill, J.A.; Biller, J.E.; Martin, S.A.; Biemann, K.; Yoshidome, K.; Sato, K. Design Considerations, Calibration and Applications of an Array Detector for a Four-Sector Tandem Mass Spectrometer. Int. J. Mass Spectrom.Ion Proc. 1989, 92, 211–230.

    CAS  Google Scholar 

  258. Birkinshaw, K. Fundamentals of Focal Plane Detectors. J. Mass Spectrom. 1997, 32, 795–806.

    CAS  Google Scholar 

  259. Cottrell, J.S.; Evans, S. The Application of a Multichannel Electro-Optical Detection System to the Analysis of Large Molecules by FAB Mass Spectrometry. Rapid Commun. Mass Spectrom. 1987, 1, 1–2.

    CAS  Google Scholar 

  260. Cottrell, J.S.; Evans, S. Characteristics of a Multichannel Electrooptical Detection System and Its Application to the Analysis of Large Molecules by Fast Atom Bombardment Mass Spectrometry. Anal. Chem. 1987, 59, 1990–1995.

    CAS  Google Scholar 

  261. Birkinshaw, K.; Langstaff, D.P. The Ideal Detector. Rapid Commun. Mass Spectrom. 1996, 10, 1675–1677.

    CAS  Google Scholar 

  262. Hucknall, D.J.Vacuum Technology and Applications; Butterworth-Heinemann: Oxford, 1991.

    Google Scholar 

  263. Pupp, W.; Hartmann, H.K. Vakuum- Technik – Grundlagen und Anwendungen; Fachbuchverlag Leipzig: Leipzig, 1991.

    Google Scholar 

  264. Wutz, M.; Adam, H.; Walcher, W. Theory and Practice of Vacuum Technology, 5th ed.; Vieweg: Braunschweig, 1992.

    Google Scholar 

  265. Foundations of Vacuum Science and Technology; Lafferty, J.M., editor; Wiley: New York, 1998.

    Google Scholar 

  266. Leybold Vacuum Products and Reference Book; Umrath, W., editor; Leybold Vacuum GmbH: Köln, 2001.

    Google Scholar 

  267. Busch, K.L. Vacuum in Mass Spectroscopy.Nothing Can Surprise You. Spectroscopy 2000, 15, 22–25.

    Google Scholar 

  268. Busch, K.L. High-Vacuum Pumps in Mass Spectrometers. Spectroscopy 2001, 16, 14–18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Instrumentation. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_4

Download citation

Publish with us

Policies and ethics