Skip to main content

Thallium Isotopes and Their Application to Problems in Earth and Environmental Science

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

This paper presents an account of the advances that have been made to date on the terrestrial stable isotope geochemistry of thallium (Tl). High precision measurements of Tl isotope ratios were only developed in the late 1990s with the advent of MC-ICP-MS and therefore we currently only have limited knowledge of the isotopic behavior of this element. Studies have revealed that Tl isotopes, despite their heavy masses of 203 and 205 atomic mass units, can fractionate substantially, especially in the marine environment. The most fractionated reservoirs identified are ferromanganese sediments and low temperature altered of oceanic crust. These display a total isotope variation of about 35 ε205Tl-units, which is over 50 times the analytical reproducibility of the measurement technique. The isotopic variation can be explained by invoking a combination of conventional mass dependent equilibrium isotope effects and the nuclear field shift isotope fractionation, but the specific mechanisms are still largely unaccounted for.

Thallium isotopes have been applied to investigate paleoceanographic processes in the Cenozoic and there is some evidence to suggest that Tl isotopes may be utilized as a monitor of Fe and Mn supply to the water column over million year time scales. In addition, Tl isotopes can be used to calculate the magnitude of hydrothermal fluid circulation through ocean crust. Such calculations can be performed both for high and low temperature fluids. Lastly, it has been shown that marine ferromanganese sediments can be detected in mantle-derived basalts with Tl isotopes (Nature 439:314–317), which confirms that marine sediments subducted at convergent plate margins can be recycled to the surface possibly via mantle plumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Lupton JE, Mullineaux LS, Zierenberg RA (eds) Seafloor hydrothermal systems, physical, chemical, and biological interactions. AGU, Washington

    Google Scholar 

  • Alt JC, Muehlenbachs K, Honnorez J (1986) An oxygen isotopic profile through the upper kilometer of the oceanic crust, DSDP Hole 504B. Earth Planet Sci Lett 80:217–229

    Google Scholar 

  • Alt JC, Teagle DAH, Bach W et al (1996) Stable and strontium isotopic profiles through hydrothermally altered uppper oceanic crust, hole 504B. Proc ODP Sci Results 148:57–69

    Google Scholar 

  • Anbar AD (2004) Iron stable isotopes: beyond biosignatures. Earth Planet Sci Lett 217:223–236

    Google Scholar 

  • Anders E, Stevens CM (1960) Search for extinct lead 205 in meteorites. J Geophys Res 65:3043–3047

    Google Scholar 

  • Archer C, Vance D (2008) The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat Geosci 1(9):597–600

    Google Scholar 

  • Baker RGA, Rehkamper M, Hinkley TK et al (2009) Investigation of thallium fluxes from subaerial volcanism-implications for the present and past mass balance of thallium in the oceans. Geochim Cosmochim Acta 73(20):6340–6359

    Google Scholar 

  • Baker RGA, Rehkämper M, Ihlenfeld C et al (2010a) Thallium isotope variations in an ore-bearing continental igneous setting: Collahuasi Formation, Northern Chile. Geochim Cosmochim Acta 74(15):4405–4416

    Google Scholar 

  • Baker RGA, Schonbachler M, Rehkamper M et al (2010b) The thallium isotope composition of carbonaceous chondrites – new evidence for live Pb-205 in the early solar system. Earth Planet Sci Lett 291(1–4):39–47

    Google Scholar 

  • Ben Othmann D, White WM, Patchett J (1989) The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth Planet Sci Lett 94:1–21

    Google Scholar 

  • Berner RA (1984) Sedimentary pyrite formation – an update. Geochim Cosmochim Acta 48(4):605–615

    Google Scholar 

  • Bidoglio G, Gibson PN, Ogorman M et al (1993) X-ray-absorption spectroscopy investigation of surface redox transformations of thallium and chromium on colloidal mineral oxides. Geochim Cosmochim Acta 57(10):2389–2394

    Google Scholar 

  • Bigeleisen J (1996) Nuclear size and shape effects in chemical reactions. Isotope chemistry of the heavy elements. J Am Chem Soc 118(15):3676–3680

    Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15(5):261–267

    Google Scholar 

  • Bruland KW (1983) Trace elements in seawater. In: Riley JP, Chester R (eds) Chemical oceanography. Academic, London

    Google Scholar 

  • Burton KW (2006) Global weathering variations inferred from marine radiogenic isotope records. J Geochem Explor 88:262–265

    Google Scholar 

  • Burton KW, Vigier N (2011) Chapter 4 Lithium Isotopes as Tracers in Marine and Terrestrial Environments. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Burton KW, Ling HF, Onions RK (1997) Closure of the Central American Isthmus and its effect on deep-water formation in the North Atlantic. Nature 386(6623):382–385

    Google Scholar 

  • Canfield DE (1998) A new model for Proterozoic ocean chemistry. Nature 396(6710):450–453

    Google Scholar 

  • Chan LH, Alt JC, Teagle DAH (2002) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201

    Google Scholar 

  • Cheam V (2001) Thallium contamination of water in Canada. Water Qual Res J Can 36(4):851–877

    Google Scholar 

  • Cheam V, Garbai G, Lechner J et al (2000) Local impacts of coal mines and power plants across Canada. I. Thallium in waters and sediments. Water Qual Res J Can 35:581–607

    Google Scholar 

  • Chen JH, Wasserburg GJ (1987) A search for evidence of extinct lead 205 in iron meteorites. LPSC XVIII:165–166

    Google Scholar 

  • Chen JH, Wasserburg GJ (1994) The abundance of thallium and premordial lead in selected meteorites – the search for 205Pb. LPSC XVV:245

    Google Scholar 

  • Cloquet C, Carignan J, Libourel G et al (2006) Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol 40(8):2525–2530

    Google Scholar 

  • Coggon RM, Rehkamper M, Atteck C et al (2009) Constraints on hydrothermal fluid fluxes from Tl geochemistry. Geochim Cosmochim Acta 73(13):A234–A234

    Google Scholar 

  • Eisenhauer A, Gogen K, Pernicka E et al (1992) Climatic influences on the growth-rates of Mn Crusts during the late quaternary. Earth Planet Sci Lett 109(1–2):25–36

    Google Scholar 

  • Elderfield H (1976) Manganese fluxes to the oceans. Mar Chem 4(2):103–132

    Google Scholar 

  • Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245

    Google Scholar 

  • Flegal AR, Patterson CC (1985) Thallium concentrations in seawater. Mar Chem 15:327–331

    Google Scholar 

  • Flegal AR, Sanudo-Wilhelmy S, Fitzwater SE (1989) Particulate thallium fluxes in the northeast Pacific. Mar Chem 28:61–75

    Google Scholar 

  • Frank M (2002) Radiogenic isotopes: tracers of past ocean circulation and erosional input. Rev Geophys 40:art. no.-1001

    Google Scholar 

  • Fujii Y, Nomura M, Okamoto M et al (1989a) An anomalous isotope effect of U-235 in U(IV)-U(VI) chemical exchange. Z Naturforsch 44(5):395–398

    Google Scholar 

  • Fujii Y, Nomura M, Onitsuka H et al (1989b) Anomalous isotope fractionation in uranium enrichment process. J Nucl Sci Technol 26(11):1061–1064

    Google Scholar 

  • Gauthier PJ, Le Cloarec MF (1998) Variability of alkali and heavy metal fluxes released by Mt. Etna volcano, Sicily, between 1991 and 1995. J Volcanol Geotherm Res 81:311–326

    Google Scholar 

  • Heggie D, Klinkhammer G, Cullen D (1987) Manganese and copper fluxes from continental margin sediments. Geochim Cosmochim Acta 51(5):1059–1070

    Google Scholar 

  • Hein JR, Koschinsky A, Bau M et al (2000) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton

    Google Scholar 

  • Heinrichs H, Schulz-Dobrick B, Wedepohl KH (1980) Terrestrial geochemistry of Cd, Bi, Tl, Pb, Zn and Rb. Geochim Cosmochim Acta 44:1519–1533

    Google Scholar 

  • Hinkley TK, Lecloarec MF, Lambert G (1994) Fractionation of families of major, minor and trace-metals across the melt vapor interface in volcanic exhalations. Geochim Cosmochim Acta 58(15):3255–3263

    Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry-the message from oceanic volcanism. Nature 385:219–229

    Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436

    Google Scholar 

  • Hofmann AW, White WM (1983) Ba, Rb and Cs in the Earth’s mantle. Z Naturforsch 38:256–266

    Google Scholar 

  • Huey JM, Kohman TP (1972) Search for extinct natural radioactivity of Pb-205 via thallium-isotope anomalies in chondrites and lunar soil. Earth Planet Sci Lett 16:401–412

    Google Scholar 

  • Huh Y, Chan LH, Zhang L et al (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051

    Google Scholar 

  • Jochum KP, Verma SP (1996) Extreme enrichment of Sb, Tl and other trace elements in altered MORB. Chem Geol 130:289–299

    Google Scholar 

  • Johnson KS, Berelson WM, Coale KH et al (1992) Manganese flux from continental-margin sediments in a transect through the oxygen minimum. Science 257(5074): 1242–1245

    Google Scholar 

  • Koschinsky A, Hein JR (2003) Acquisition of elements from seawater by ferromanganese crusts: solid phase association and seawater speciation. Mar Geol 198:331–351

    Google Scholar 

  • Kurtz AC, Kump LR, Arthur MA et al (2003) Early Cenozoic decoupling of the global carbon and sulfur cycles. Paleoceanography 18(4):14.1–14.14

    Google Scholar 

  • Lee D-C, Halliday AN, Hein JR et al (1999) Hafnium isotope stratigraphy of ferromanganese crusts. Science 285:1052–1054

    Google Scholar 

  • Lin T-S, Nriagu J (1999) Thallium speciation in the Great Lakes. Environ Sci Technol 33:3394–3397

    Google Scholar 

  • Lis J, Pasieczna A, Karbowska B et al (2003) Thallium in soils and stream sediments of a Zn-Pb mining and smelting area. Environ Sci Technol 37(20):4569–4572

    Google Scholar 

  • Marschall HR, Pogge von Strandmann PAE, Seitz HM et al (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262(3–4):563–580

    Google Scholar 

  • Matthews AD, Riley JP (1970) The occurrence of thallium in sea water and marine sediments. Chem Geol 149:149–152

    Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120:223–253

    Google Scholar 

  • McGoldrick PJ, Keays RR, Scott BB (1979) Thallium – sensitive indicator of rock-seawater interaction and of sulfur saturation of silicate melts. Geochim Cosmochim Acta 43:1303–1311

    Google Scholar 

  • Metz S, Trefry JH (2000) Chemical and mineralogical influences on concentrations of trace metals in hydrothermal fluids. Geochim Cosmochim Acta 64:2267–2279

    Google Scholar 

  • Mottl MJ (2003) Partitioning of energy and mass fluxes between mid-ocean ridge axes and flanks at high and low temperature. In: Halbach PE, Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine hydrothermal systems. Dahlem University Press, Berlin

    Google Scholar 

  • Nielsen SG, Goff M, Hesselbo SP, et al (2011) Thallium isotopes in early diagenetic pyrite - a paleoredox proxy? Geochim Cosmochim Acta, In Press

    Google Scholar 

  • Nielsen SG, Rehkämper M, Baker J et al (2004) The precise and accurate determination of thallium isotope compositions and concentrations for water samples by MC-ICPMS. Chem Geol 204:109–124

    Google Scholar 

  • Nielsen SG, Rehkämper M, Porcelli D et al (2005) The thallium isotope composition of the upper continental crust and rivers – an investigation of the continental sources of dissolved marine thallium. Geochim Cosmichim Acta 69:2007–2019

    Google Scholar 

  • Nielsen SG, Rehkämper M, Halliday AN (2006a) Large thallium isotopic variations in iron meteorites and evidence for lead-205 in the early solar system. Geochim Cosmochim Acta 70:2643–2657

    Google Scholar 

  • Nielsen SG, Rehkämper M, Norman MD et al (2006b) Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature 439:314–317

    Google Scholar 

  • Nielsen SG, Rehkämper M, Teagle DAH et al (2006c) Hydrothermal fluid fluxes calculated from the isotopic mass balance of thallium in the ocean crust. Earth Planet Sci Lett 251(1–2):120–133

    Google Scholar 

  • Nielsen SG, Rehkämper M, Brandon AD et al (2007) Thallium isotopes in Iceland and Azores lavas – implications for the role of altered crust and mantle geochemistry. Earth Planet Sci Lett 264:332–345

    Google Scholar 

  • Nielsen SG, Peacock CL, Halliday AN (2008) Investigation of thallium isotope fractionation during sorption to Mn oxides. Geochim Cosmochim Acta 72(12):A681

    Google Scholar 

  • Nielsen SG, Mar-Gerrison S, Gannoun A et al (2009a) Thallium isotope evidence for increased marine organic carbon export in the early Eocene. Earth Planet Sci Lett 278:297–307

    Google Scholar 

  • Nielsen SG, Williams HM, Griffin WL et al (2009b) Thallium isotopes as a potential tracer for the origin of cratonic eclogites? Geochim Cosmochim Acta 73:7387–7398

    Google Scholar 

  • Nriagu J (ed) (1998) Thallium in the environment. Wiley, New York

    Google Scholar 

  • Ostic RG, Elbadry HM, Kohman TP (1969) Isotopic composition of meteoritic thallium. Earth Planet Sci Lett 7(1):72–76

    Google Scholar 

  • Patterson CC, Settle DM (1987) Magnitude of lead flux to the atmosphere from volcanos. Geochim Cosmochim Acta 51(3):675–681

    Google Scholar 

  • Paytan A, Kastner M, Campbell D et al (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282(5393):1459–1462

    Google Scholar 

  • Paytan A, Kastner M, Campbell D et al (2004) Seawater sulfur isotope fluctuations in the cretaceous. Science 304(5677):1663–1665

    Google Scholar 

  • Peacock CL, Moon EM, Nielsen SG et al (2009) Oxidative scavenging of Tl by Mn oxide birnessite: sorption and stable isotope fractionation. Geochim Cosmochim Acta 73(13):A1003

    Google Scholar 

  • Pengra JG, Genz H, Fink RW (1978) Orbital electron capture ratios in the decay of 205Pb. Nucl Phys A302:1–11

    Google Scholar 

  • Pietruszka AJ, Reznik AD (2008) Identification of a matrix effect in the MC-ICP-MS due to sample purification using ion exchange resin: an isotopic case study of molybdenum. Int J Mass Spectrom 270(1–2):23–30

    Google Scholar 

  • Pogge von Strandmann PAE, Burton KW, James RH et al (2010) Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem Geol 270(1–4):227–239

    Google Scholar 

  • Poirier A, Doucelance R (2009) Effective correction of mass bias for rhenium measurements by MC-ICP-MS. Geostand Geoanal Res 33(2):195–204

    Google Scholar 

  • Prytulak J, Nielsen SG (unpublished data) Thallium isotope budget of the Mariana arc and influence of subducted slab components. Chem Geol. In Prep

    Google Scholar 

  • Rehkämper M, Halliday AN (1999) The precise measurement of Tl isotopic compositions by MC- ICPMS: application to the analysis of geological materials and meteorites. Geochim Cosmochim Acta 63:935–944

    Google Scholar 

  • Rehkämper M, Nielsen SG (2004) The mass balance of dissolved thallium in the oceans. Mar Chem 85:125–139

    Google Scholar 

  • Rehkämper M, Frank M, Hein JR et al (2002) Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits. Earth Planet Sci Lett 197:65–81

    Google Scholar 

  • Rehkämper M, Frank M, Hein JR et al (2004) Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth Planet Sci Lett 219:77–91

    Google Scholar 

  • Rudge JF, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265(3–4):420–431

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Pergamon, Oxford

    Google Scholar 

  • Sager M (1993) Determination of arenic, cadmium, mercury, stibium, thallium and zinc in coal and coal fly-ash. Fuel 72(9):1327–1330

    Google Scholar 

  • Sasmaz A, Sen O, Kaya G et al (2007) Distribution of thallium in soil and plants growing in the keban mining district of Turkey and determined by ICP-MS. At Spectrosc 28(5):157–163

    Google Scholar 

  • Sawlan JJ, Murray JW (1983) Trace-metal remobilisation in the interstitial waters of red clay and hemipelagic marine sediments. Earth Planet Sci Lett 64(2):213–230

    Google Scholar 

  • Schauble EA (2007) Role of nuclear volume in driving equilibrium stable isotope fractionation of mercury, thallium, and other very heavy elements. Geochim Cosmochim Acta 71(9):2170–2189

    Google Scholar 

  • Schedlbauer OF, Heumann KG (2000) Biomethylation of thallium by bacteria and first determination of biogenic dimethylthallium in the ocean. Appl Organometal Chem 14:330–340

    Google Scholar 

  • Segl M, Mangini A, Bonani G et al (1984) Be-10-Dating of a manganese crust from Central North Pacific and implications for ocean palaeocirculation. Nature 309(5968): 540–543

    Google Scholar 

  • Segl M, Mangini A, Beer J et al (1989) Growth rate variations of manganese nodules and crusts induced by paleoceanographic events. Paleoceanography 4(5):511–530

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Shaw DM (1952) The geochemistry of thallium. Geochim Cosmochim Acta 2:118–154

    Google Scholar 

  • Shiel AE, Barling J, Orians KJ et al (2009) Matrix effects on the multi-collector inductively coupled plasma mass spectrometric analysis of high-precision cadmium and zinc isotope ratios. Anal Chim Acta 633(1):29–37

    Google Scholar 

  • Teagle DAH, Alt JC, Bach W et al (1996) Alteration of upper ocean crust in a ridge-flank hydrothermal upflow zone: mineral, chemical, and isotopic constraints from hole 896A. Proc ODP Sci Results 148:119–150

    Google Scholar 

  • Thirlwall MF, Gee MAM, Taylor RN et al (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68(2):361–386

    Google Scholar 

  • Tsuchiyama A, Kawamura K, Nakao T et al (1994) Isotopic effects on diffusion in MgO melt simulated by the molecular-dynamics (Md) method and implications for isotopic mass fractionation in magmatic systems. Geochim Cosmochim Acta 58:3013–3021

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc May:562–581

    Google Scholar 

  • van de Flierdt T, Frank M, Halliday AN et al (2004) Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget-a combined Pb-Hf-Nd isotope approach. Earth Planet Sci Lett 222:259–273

    Google Scholar 

  • Wallmann K (2001) Controls on the Cretaceous and Cenozoic evolution of seawater composition, atmospheric CO2 and climate. Geochim Cosmochim Acta 65(18):3005–3025

    Google Scholar 

  • Wedepohl KH (1974) Handbook of geochemistry. Springer, Berlin

    Google Scholar 

  • Williams H, Turner S, Kelley S et al (2001) Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension and its relationship to postcollisional volcanism. Geology 29(4):339–342

    Google Scholar 

  • Williams HM, McCammon CA, Peslier AH et al (2004) Iron isotope fractionation and the oxygen fugacity of the mantle. Science 304:1656–1659

    Google Scholar 

  • Williams HM, Nielsen SG, Renac C et al (2009) Fractionation of oxygen and iron isotopes in the mantle: implications for crustal recycling and the source regions of oceanic basalts. Earth Planet Sci Lett 283:156–166

    Google Scholar 

  • Xiao TF, Boyle D, Guha J et al (2003) Groundwater-related thallium transfer processes and their impacts on the ecosystem: southwest Guizhou Province. China Appl Geochem 18(5):675–691

    Google Scholar 

  • Xiao TF, Guha J, Boyle D et al (2004) Environmental concerns related to high thallium levels in soils and thallium uptake by plants in southwest Guizhou. China Sci Total Environ 318(1–3):223–244

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sune G. Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nielsen, S.G., Rehkämper, M. (2012). Thallium Isotopes and Their Application to Problems in Earth and Environmental Science. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_13

Download citation

Publish with us

Policies and ethics