Skip to main content

Transgenic Crops for Herbicide Resistance

  • Chapter

Abstract

A year after the introduction of the first commercial transgenic crop (Flavr Savr™ tomato with a longer shelf life) in 1994, transgenic, herbicide-resistant crops (HRCs) were introduced (Table 3.1) with the introduction of bromoxynil- (3,5-dibromo-4-hydroxybenzonitrile) resistant cotton and glufosinate- [2-amino-4-(hydroxymethylphosphinyl)butanoic acid] resistant canola. Bromoxynil resistance had little market penetration during the years when it was available. The next year, 1996, marked the introduction of the first glyphosate- [N-(phosphonomethyl) glycine] resistant (GR) crop (soybean). Other GR and glufosinate-resistant crops were introduced in the subsequent years. GR crops now represent well over 80% of all transgenic crops grown worldwide (James 2008). Accordingly, this chapter will deal primarily with GR crops. Several reviews (e.g., Duke 2005; Duke and Cerdeira 2005; Cerdeira and Duke 2006) and two books (McClean and Evans 1995; Duke 1996) are available on the topic of HRCs, but this rapidly evolving topic requires timely updates.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Ahmad H, Galili S, Gressel J (2004) Tandem constructs to mitigate transgene persistence: Tobacco as a model. Mol Ecol 13:697–710

    CAS  PubMed  Google Scholar 

  • Allnutt TR, Dwyer M, McMillan J, Henry C, Langrell S (2008) Sampling and modeling for quantification of adventitious genetically modified presence in maize. J Agri Food Chem 56:3232–3237

    CAS  Google Scholar 

  • American Soybean Association (2001) Conservation tillage study, American Soybean Association, St. Louis, MO, USA. http://www.soygrowers.com/ctstudy/ctstudy_files/frame.htm. Accessed 24 Dec 2008

  • Amman K (2005) Effects of biotechnology on biodiversity: herbicide-tolerant and insect-resistant GM crops. Trends Biotechnol 23:388–394

    Google Scholar 

  • Anderson JA, Kolmer JA (2005) Rust control in glyphosate tolerant wheat following application of the herbicide glyphosate. Plant Dis 89:1136–1142

    CAS  Google Scholar 

  • Appenzeller LM, Munley SM, Hoban D, Sykes GP, Malley LA, Delaney B (2008) Subchronic feeding study of herbicide-tolerant soybean DP-356O43–5 in Sprague-Dawley rats. Food Chem Toxicol 46:2201–2213

    CAS  PubMed  Google Scholar 

  • Arias RS, Netherland MD, Atul P, Dayan FD (2005) Biology and molecular evolution of resistance to phytoene desaturase inhibitors in Hydrilla verticillata and its potential use of produce herbicide-resistant crops. Pest Manag Sci 61:258–268

    CAS  PubMed  Google Scholar 

  • Arregui MC, Lenardon A, Sanchez D, Maitre MI, Scotta R, Enrique S (2004) Monitoring glyphosate residues in transgenic glyphosate-resistant soybean. Pest Manag Sci 60:163–166

    CAS  PubMed  Google Scholar 

  • Atherton KT (2002) Safety assessment of genetically modified crops. Toxicology 181–182:421–426

    PubMed  Google Scholar 

  • Autran JC, Benetrix F, Bloc D, Burghart P, Chaurand M, Combe N, Melcion JP (2003) Composition and technological value of genetically modified and conventional maize. Sci Aliments 23:223–247

    CAS  Google Scholar 

  • Baerson SR, Rodriquez DJ, Tran M, Feng Y, Biest NA, Dill GM (2002) Glyphosate-resistant goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol 129:1265–1275

    CAS  PubMed  Google Scholar 

  • Barrett KA, McBride MB (2005) Oxidative degradation of glyphosate and aminomethylpho-sphonate by manganese oxide. Environ Sci Technol 39:9223–9228

    CAS  PubMed  Google Scholar 

  • Baylis A (2008) Biofuels: What impact on crop protection and seeds now? Outlooks on Pest Manag 19:270–274

    Google Scholar 

  • Beckie HJ, Owen MDK (2007) Herbicide-resistant crops as weeds in North America. CAB Rev 2, No. 044, pp 22, http://www.cabi.org/cabreviews/default.aspx?LoadModule=Review&ReviewID=33801&site=167&page=1178

  • Behrens MR, Mutlu N, Chakraborty S, Dumitru R, Jiang WZ, LaVallee BJ, Herman PL, Clemente TE, Weeks DP (2007) Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    CAS  PubMed  Google Scholar 

  • Bellaloui N, Reddy K, Zablotowicz RM, Mengistu A (2006) Simulated glyphosate drift influences nitrate assimilation and nitrogen fixation in non-glyphosate-resistant soybean. J Agri Food Chem 54:3357–3364

    CAS  Google Scholar 

  • Bennett R, Phipps R, Strange A, Grey P (2004) Environmental and human health impacts of growing genetically modified herbicide-tolerant sugar beet: a life-cycle assessment. Plant Biotechnol J 2:273–278

    CAS  PubMed  Google Scholar 

  • Bernards ML, Thelen KD, Muthukumaran RB, Penner D, McCracken JL (2005) Glyphosate interaction witth manganese in tank mixtures and its effect on glyphosate absorption and translocation. Weed Sci 53:787–794

    CAS  Google Scholar 

  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res Microbiol 150:375–384

    CAS  PubMed  Google Scholar 

  • Bisht NC, Burma PK, Pental D (2004) Development of 2, 4-D-resistant transgenics in Indian oilseed mustard (Brassica juncea). Curr Sci 87:367–370

    CAS  Google Scholar 

  • Bohme H, Aulrich K, Daenicke R, Flachowsky G (2001) Genetically modified feeds in animal nutrition. 2nd communication: Glufosinate tolerant sugar beets (roots and silage) and maize grains for ruminants and pigs. Arch Anim Nutrit 54:197–207

    CAS  Google Scholar 

  • Bonny S (2008) Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects: a review. Agron Sustain Dev 28:21–32

    Google Scholar 

  • Borggaard OK, Gimsing AL (2008) Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag Sci 64:441–456

    CAS  PubMed  Google Scholar 

  • Bott S, Tesfamariam T, Candan H, Cakamak I, Römheld V, Neumann G (2008) Glyphosate-induced impairment of plant growth and micronutient status in glyphosate-resistant soybean (Glycine max L.). Plant Soil 312:185–194

    CAS  Google Scholar 

  • Bradley KW, Sweets LE (2008) Influence of glyphosate and fungicide coapplications on weed control, spray penetration, soybean response, and yield in glyphosate-resistant soybean. Agron J 100:1360–1365

    CAS  Google Scholar 

  • Bradshaw LD, Padgette SR, Kimball SL, Wells BH (1997) Perspectives on glyphosate resistance. Weed Technol 11:189–198

    CAS  Google Scholar 

  • Brake BG, Evenson DP (2004) A generational study of glyphosate-tolerant soybeans on mouse fetal, postnatal, pubertal and adult testicular development. Food Chem Toxicol 42:29–36

    CAS  PubMed  Google Scholar 

  • Brimner TA, Gallivan GJ, Stephenson GR (2005) Influence of herbicide-resistant canola on the environmental impact of weed management. Pest Manag Sci 61:47–52

    CAS  PubMed  Google Scholar 

  • Brookes G, Barfoot P (2006) Global impact of biotech crops: Socio-economic and environmental effects in the first ten years of commercial use. AgBioForum 9:139–151

    Google Scholar 

  • Brown J, Brown A (1996) Gene transfer between canola (Brassica napus L. and B. campestris L.) and related species. Ann Appl Biol 129:555–560

    Google Scholar 

  • Brown PB, Wilson KA, Jonker Y, Nickson TE (2003) Glyphosate tolerant canola meal is equivalent to the parental line in diets fed to rainbow trout. J Agri Food Chem 51:4268–4272

    CAS  Google Scholar 

  • Buchanan-Wollaston V, Snape A, Cannon F (1992) A plant selective marker gene based on the detoxification of the herbicide dalapon. Plant Cell Rep 11:627–631

    CAS  Google Scholar 

  • Canola Council of Canada (2001) An agronomic and economic assessment of transgenic canola. http://www.canola-council.org/

  • Castle LA, Siehl DL, Gorton R, Patten PA, Chen YH, Cho BS, H-J DN, Wong J, Liu D, Lassner MW (2004) Discovery and directed evolution of a glyphosate tolerance gene. Science 304:1151–1154

    CAS  PubMed  Google Scholar 

  • Cedergreen N (2008) Is the growth stimulation by low doses of glyphosate sustained over time? Environ Poll 156:1099–1104

    CAS  Google Scholar 

  • Cedergreen N, Streibig JC, Kudsk P, Mathiassen SK, Duke SO (2007) The occurrence of hormesis in plants and algae. Dose-Response 5:150–162

    CAS  Google Scholar 

  • Cellini F, Chesson A, Colquhoun I, Constable A, Davies HV, Engel KH, Gatehouse AMR, Kaerenlampi S, Kok EJ, Leguay JJ, Lehesranta S, Noteborn HPJM, Pedersen J, Smith M (2004) Unintended effects and their detection in genetically modified crops. Food Chem Toxicol 42:1089–1125

    CAS  PubMed  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    CAS  PubMed  Google Scholar 

  • Cerdeira AL, Duke SO (2007) Environmental impacts of transgenic herbicide-resistant crops. CAB Rev: Perspectives in Agri Vet Sci Nutri Nat Res 2:#033, pp, 14, http://www.cabi.org/cabreviews/default.aspx?LoadModule=Review&ReviewID=31919167&page=1178

  • Cerdeira AL, Gazziero DLP, Duke SO, Matallo MB, Spadoto CA (2007) Review of potential environmental impacts of transgenic glyphosate-resistant soybean in Brazil. J Environ Sci Health, Part B: Pest Food Contam Agri Wastes 42:539–549

    CAS  Google Scholar 

  • Chang HS, Kim NH, Park MJ, Lim SK, Kim SC, Kim JY, Kim JA, Oh HY, Lee CH, Huh K, Jeong TC, Nam DH (2003) The 5-enolpyruvylshikimate-3-phosphate synthase of glyphosate-tolerant soybean expressed in Escherichia coli shows no severe allergenicity. Mol Cell 15:20–26

    CAS  Google Scholar 

  • Clewis SB, Wilcut JW (2007) Economic assessment of weed management in strip- and conventional-tillage nontransgenic and transgenic cotton. Weed Technol 21:45–52

    CAS  Google Scholar 

  • Combs DK, Hartnell GF (2008) Alfalfa containing the glyphosate-tolerant trait has no effect on feed intake, milk composition, or milk production of dairy cattle. J Dairy Sci 91:673–678

    CAS  PubMed  Google Scholar 

  • Coupland D, Caseley JC (1979) Presence of 14C activity in root exudates and guttation fluid from Agropyron repens treated with 14C-labeled glyphosate. New Phytol 83:17–22

    CAS  Google Scholar 

  • Cromwell GL, Lindemann MD, Randolph JH, Parker GR, Coffey RD, Laurent KM, Armstrong CL, Mikel WB, Stanisiewski EP, Hartnell GF (2002) Soybean meal from Roundup Ready or conventional soybeans in diets for growing-finishing swine. J Anim Sci 80:708–715

    CAS  PubMed  Google Scholar 

  • Cromwell GL, Henry BJ, Scott AL, Gerngross MF, Dusek DL, Fletcher DW (2005) Glufosinate herbicide-tolerant (LibertyLink) rice vs. conventional rice in diets for growing-finishing swine. J Anim Sci 83:1068–1074

    CAS  PubMed  Google Scholar 

  • Daenicke R, Aulrich K, Flachowsky G (2000) Investigations on the nutritional value of sugar beets and sugar beet leaf silage of isogenic and transgenic plants for muttons. VDLUFA-Schriftenreihe 55:84–86

    CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    CAS  PubMed  Google Scholar 

  • Darmency H, Vigouroux Y, De Garambe T, Gestat R-MM, Muchembled C (2007) Transgene escape in sugar beet production fields: data from six years farm scale monitoring. Environ Biosaf Res 6:197–206

    Google Scholar 

  • Devine MD (2005) Why are there not more herbicide-tolerant crops? Pest Manag Sci 61:312–317

    CAS  PubMed  Google Scholar 

  • Devine MD, Duke SO, Fedtke K (1993) Physiology of herbicide action. PTR Prentiss-Hall, Englewood Cliffs, NJ, USA, p 441

    Google Scholar 

  • Devos Y, Reheul D, De Schrijver A, Cors F, Moens W (2005) Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ Biosaf Res 3:135–148

    Google Scholar 

  • Devos Y, Cougnon M, Vergucht S, Bulcke R, Haesaert G, Steurbaut W, Reheul D (2008) Environmental impact of herbicide regimes used with genetically modified herbicide-resistant maize. Transgen Res 17:1059–1077

    CAS  Google Scholar 

  • Dick RE, Quinn JP (1995) Glyphosate-degrading isolates from environmental samples: occurrence and pathways of degradation. Appl Microbiol Biotechnol 43:545–550

    CAS  PubMed  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    CAS  PubMed  Google Scholar 

  • Dill GM, CaJacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64:326–331

    CAS  PubMed  Google Scholar 

  • Dinelli G, Marotti I, Bonetti A, Catizone P, Urbano JM, Barnes J (2008) Physiological and molecular bases of glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res 48:257–265

    CAS  Google Scholar 

  • Donkin SS, Velez JC, Totten AK, Stanisiewski EP, Hartnell GF (2003) Effects of feeding silage and grain from glyphosate-tolerant or insect-protected corn hybrids on feed intake, ruminal digestion, and milk production in dairy cattle. J Dairy Sci 86:1780–1788

    CAS  PubMed  Google Scholar 

  • Duke SO (1988) Glyphosate. In: Kearney PC, Kaufman DD (eds) Herbicides — chemistry, degradation and mode of action, vol III. Marcel Dekker, New York, USA, pp 1–70

    Google Scholar 

  • Duke SO (ed) (1996) Herbicide-resistant crops. CRC Press, USA, p 420

    Google Scholar 

  • Duke SO (2003) Weeding with transgenes. Trends Biotechnol 21:192–195

    CAS  PubMed  Google Scholar 

  • Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag Sci 61:211–218

    CAS  PubMed  Google Scholar 

  • Duke SO (2006) The use of transgenes for weed management. J Plant Dis Protect 20:3–10 Spl Iss

    Google Scholar 

  • Duke SO, Cerdeira AL (2005) Potential environmental impacts of herbicide-resistant crops. In: Collection of biosafety reviews, vol 2. International Centre for Genetic Engineering and Biotechnology, Trieste, Italy, pp. 66–143

    Google Scholar 

  • Duke SO, Powles SB (2008a) Editorial: glyphosate-resistant weeds and crops. Pest Manag Sci 64:317–318

    CAS  Google Scholar 

  • Duke SO, Powles SB (2008b) Glyphosate: a once in a century herbicide. Pest Manag Sci 64:319–325

    CAS  Google Scholar 

  • Duke SO, Holt JS, Hess FD, Christy AL (1991) Herbicide-resistant crops. Comments from CAST, No 1999-1, Council for Agricultural Science and Technology, Ames, IA, USA, p. 24

    Google Scholar 

  • Duke SO, Baerson SR, Rimando, AM (2003a) Herbicides: glyphosate. In: Plimmer JR, Gammon DW, Ragsdale NN (eds) Encyclopedia of agrochemicals. John Wiley, New York, USA http://www.mrw.interscience.wiley.com/eoa/articles/agr119/frame.html

  • Duke SO, Rimando AM, Pace PF, Reddy KN, Smeda RJ (2003b) Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J Agri Food Chem 51:340–344

    CAS  Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: Is it an important factor in herbicide use and allelopathy. Outlooks Pest Manag 17:29–33

    Google Scholar 

  • Duke SO, Wedge DE, Cerdeira AL, Matallo MB (2007) Interactions of synthetic herbicides with plant disease and microbial herbicides. In: Vurro M, Gressel J (eds) Novel Biotechnologies for Biocontrol Agent Enhancement and Management. Springer, Dordrecht, The Netherlands, pp 277–296

    Google Scholar 

  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J Environ Qual 33:806–815

    CAS  PubMed  Google Scholar 

  • Ebert E, Leist KH, Mayer D (1990) Summary of safety evaluation toxicity studies of glufosinate ammonium. Food Chem Toxicol 28:339–349

    CAS  PubMed  Google Scholar 

  • Erickson GE, Robbins ND, Simon JJ, Berger LL, Klopfenstein TJ, Stanisiewski EP, Hartnell GF (2003) Effect of feeding glyphosate-tolerant (Roundup-Ready events GA21 or nk603) corn compared with reference hybrids on feedlot steer performance and carcass characteristics. J Anim Sci 81:2600–2608

    CAS  PubMed  Google Scholar 

  • Feng PCC, Baley GJ, Clinton WP, Bunkers GJ., Alibhai MF, Paulitz TC, Kidwell KK (2005) Glyphosate inhibits rust diseases in glyphosate-resistant wheat and soybean. Proc Natl Acad Sci USA 102:17290–17295

    CAS  PubMed  Google Scholar 

  • Feng PCC, Clark C, Andrade GC, Balbi MC, Caldwell P (2008) The control of Asian rust by glyphosate-resistant soybeans. Pest Manag Sci 64:353–359

    CAS  PubMed  Google Scholar 

  • Gardner JG, Nelson GC (2008) Herbicides, glyphosate resistance and acute mammalian toxicity: simulating an environmental effect of glyphosate-resistant weeds in the USA. Pest Manag Sci 64:470–478

    CAS  PubMed  Google Scholar 

  • Gianessi LP (2005) Economic and herbicide use impacts of glyphosate-resistant crops. Pest Manag Sci 61:241–245

    CAS  PubMed  Google Scholar 

  • Gianessi LP (2008) Economic impacts of glyphosate-resistant crops. Pest Manag Sci 64:346–352

    CAS  PubMed  Google Scholar 

  • Giesy JP, Dobson S, Solomon KR (2000) Ecotoxicological risk assessment for Roundup herbicide. Rev Environ Contam Toxicol 167:35–120

    CAS  Google Scholar 

  • Giovannetti M (2003) The ecological risks of transgenic plants. Rivista Biol 96:207–223

    Google Scholar 

  • Goldberg RJ, Rissler J, Shand H, Hassebrook C (1990) Biotechnology's Bitter Harvest: Herbicide-tolerant crops and the threat to sustainable agriculture. Environental Defense Fund, New York, USA 73 p

    Google Scholar 

  • Grant RJ, Fanning KC, Kleinschmit D, Stanisiewski EP, Hartnell GF (2003) Influence of glypho-sate-tolerant (event nk603) and corn rootworm protected (event MON863) corn silage and grain on feed consumption and milk production in Holstein cattle. J Dairy Sci 86:1707–1715

    CAS  PubMed  Google Scholar 

  • Green JM, Hazel CB, Forney DR, Pugh LM (2008) New multiple-herbicide crop resistance and formulation technology to augment the utility of glyphosate. Pest Manag Sci 64:332–339

    CAS  PubMed  Google Scholar 

  • Gressel J (2002) Molecular biology of weed control. Taylor & Francis, London, UK, p 504

    Google Scholar 

  • Gressel J, Al-Ahmad H (2004) Methods and transgenic plants for mitigating introgression of genetically engineered genetic traits from crop plants into related species. US Patent Appl Publ US Der No 889 737, abandoned App US 2004–774 388 20040210

    Google Scholar 

  • Gustafson DI (2008) Sustainable use of glyphosate in North American cropping systems. Pest Manag Sci 64:409–416

    CAS  PubMed  Google Scholar 

  • Hack R, Ebert E, Ehling G, Leist KH (1994) Glufosinate ammonium-some aspects of its mode of action in mammals. Food Chem Toxicol 32:461–470

    CAS  PubMed  Google Scholar 

  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant B. napus volunteers. Weed Sci 48:688–694

    CAS  Google Scholar 

  • Hammond BG, Vicini JL, Hartnell GF, Naylor MW, Knight CD, Robinson EH, Fuchs RL, Padgette SR (1996) The feeding value of soybeans fed to rats, chickens, catfish and dairy cattle is not altered by genetic incorporation of glyphosate tolerance. J Nutri 126:717–727

    CAS  Google Scholar 

  • Hammond B, Dudek R, Lemen J, Nemeth M (2004) Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn. Food Chem Toxicol 42:1003–1014

    CAS  PubMed  Google Scholar 

  • Harrison LA, Bailey MR, Naylor MW, Ream JE, Hammond BG, Nida DL, Burnette BL, Nickson TE, Mitsky TA, Taylor TA, Fuchs RL, Padgette SR (1996) The expressed protein in glypho-sate-tolerant soybean, 5-enolpyruvylshikimate-3-phosphase synthase from Agrobacterium sp. strain CP4 is rapidly digested in vitro and is not toxic to acutely gavaged mice. J Nutr 126:728–740

    CAS  PubMed  Google Scholar 

  • Hartnell GF, Hvelplund T, Weisbjerg MR (2005) Nutrient digestibility in sheep fed diets containing Roundup Ready or conventional fodder beet, sugar beet, and beet pulp. J Anim Sci 83:400–407

    CAS  PubMed  Google Scholar 

  • Healy C, Hammond B, Kirkpatrick J (2008) Results of a 13-week safety assurance study with rats fed grain from corn rootworm-protected, glyphosate -tolerant MON 88017 corn. Food Chem Toxicol 46:2517–2524

    CAS  PubMed  Google Scholar 

  • Heap IM (1997) The occurrence of herbicide-resistant weeds worldwide. Pest Sci 51:235–243

    CAS  Google Scholar 

  • Heap IM (2008) International survey of herbicide resistant weeds. http://www.weedscience.org/In.asp

  • Herman PL, Behrens M, Chakraborty S, Chrastil BM, Barycki J, Weeks DP (2005) A three-component dicamba O-demethylase from Pseudomonas maltophilia, Strain DI-6: gene isolation, characterization, and heterologous expression. J Biol Chem 280:24759–24767

    CAS  PubMed  Google Scholar 

  • Herouet C, Esdaile DJ, Mallyon BA, Debruyne E, Schulz A, Currier T, Hendrickx K, van der Klis R-J, Rouan D (2005) Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the pat and bar sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regul Toxicol Pharmacol 41:134–149

    CAS  PubMed  Google Scholar 

  • Hoagland RE (1980) Effects of glyphosate on metabolism of phenolic compounds: VI. Effects of glyphosine and glyphosate metabolites on phenylalanine ammonia-lyase activity, growth, and protein, chlorophyll, and anthocyanin levels in soybean (Glycine max) seedlings. Weed Sci 28:393–400

    CAS  Google Scholar 

  • Hyun Y, Bressner GE, Ellis M, Lewis AJ, Fischer R, Stanisiewski EP, Hartnell GF (2004) Performance of growing-finishing pigs fed diets containing Roundup Ready corn (event nk603), a nontransgenic genetically similar corn, or conventional corn lines. J Anim Sci 82:571–580

    CAS  PubMed  Google Scholar 

  • Ipharraguerre IR, Younker RS, Clark JH, Stanisiewski EP, Hartnell GF (2003) Performance of lactating dairy cows fed corn as whole plant silage and grain produced from a glyphosate-tolerant hybrid (event NK603). J Dairy Sci 86:1734–1741

    CAS  PubMed  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal Ecology. Springer, Berlin, pp 75–92

    Google Scholar 

  • James C (2008) International service for the acquisition of agri-biotech applications. http://www.isaaa.org/resources/publications/briefs/37/pptslides/Brief37slides.pdf

  • Jennings JC, Kolwyck DC, Kays SB, Whetsell AJ, Surber JB, Cromwell GL (2003) Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. J Anim Sci 81:1447–1455

    CAS  PubMed  Google Scholar 

  • Jepson I, Martinez A, Sweetman JP (1998) Chemical-inducible gene expression systems for plants – a review. Pest Sci 54:360–367

    CAS  Google Scholar 

  • Jolley VD, Hansen NC, Shiffer AK (2004) Nutritional and management related interactions with iron-deficiency stress response mechanisms. Soil Sci Plant Nutr 50:973–981

    CAS  Google Scholar 

  • Kim YT, Kim SE, Park KD, Kang TH, Lee YM, Lee SH, Moon JS, Kim SU (2005) Investigation of possible gene transfer from leaf tissue of transgenic potato to soil bacteria. J Microbiol Biotechnol 15:1130–1134

    CAS  Google Scholar 

  • Kishore GM, Jacob GS (1987) Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate. J Biol Chem 262:12164–12168

    CAS  PubMed  Google Scholar 

  • Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felso AS, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong S-S (2007) Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci 64:479–488

    Google Scholar 

  • Kleter GA, Harris C, Stephenson G, Unsworth J (2008) Comparison of herbicide regimes and the associated potential effects of glypyosate-resistant crops versus what they replace in Europe. Pest Manag Sci 64:479–488

    CAS  PubMed  Google Scholar 

  • Koch HJ, Pringas C, Scherer J (2003) Conservation tillage for sustainable sugarbeet production in Germany – environmental and phytopathological aspects. Zuckerindustrie 128:810–813

    CAS  Google Scholar 

  • König A, Cockburn A, Crevel RWR, Debruyne E, Grafstroem R, Hammerling U, Kimber I, Knudsen I, Kuiper HA, Peijnenburg AACM, Penninks AH, Poulsen M, Schauzu M, Wal JM (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42:1047–1088

    PubMed  Google Scholar 

  • Kremer RJ, Means NE, Kim S (2005) Glyphosate affects soybean root exudation and rhizosphere microorganisms. Int J Environ Anal Chem 85:1165–1174

    CAS  Google Scholar 

  • Kuiper HA, Noteborn HPJM, Kok EJ, Kleter GA (2002) Safety aspects of novel food. Food Res Int 35:267–271

    CAS  Google Scholar 

  • Laitinen P, Rämö S, Siimes K (2007) Glyphosate translocation from plants to soil - does this constitute a significant proportion of residues in soil? Plant Soil 300:51–60

    CAS  Google Scholar 

  • Lappe MA, Bailey EB, Childress C, Setchell KDR (1999) Alterations in clinically important phytoestrogens in genetically modified, herbicide-tolerant soybeans. J Med Food 1:241–245

    Google Scholar 

  • Larson RL, Hill AL, Fenwick A, Kniss AR, Hanson LE, Miller SD (2005) Influence of glyphosate on Rhizoctonia and Fusarium root rot in sugar beet. Pest Manag Sci 62:1182–1192

    Google Scholar 

  • Lee CD, Penner D, Hammerschmidt R (2003) Influence of formulated glyphosate and activator adjuvants on Schlerotinia schlerotiorum in glyhphosate-resistant and susceptible Glycine max. Weed Sci 48:710–715

    Google Scholar 

  • Lee CD, Renner KA, Penner D, Hammerschmidt R, Kelly JD (2005) Glyphosate-resistant soybean management system effect on Scleroinia stem rot. Weed Technol 19:580–588

    Google Scholar 

  • Levy-Booth DJ, Campbell RG, Gulden RH, Hart M, Powell JR, Klironomos JN, Pauls KP, Swanton CJ, Trevors JT, Dunfield KE (2008) Real-time polymerase chain reaction monitoring of recombinant DNA entry into soil from decomposing Roundup Ready leaf biomass. J Agri Food Chem 56:6339–6347

    CAS  Google Scholar 

  • Li X, Nicholl D (2005) Development of PPO inhibitor-resistant cultures and crops. Pest Manag Sci 61:277–285

    CAS  PubMed  Google Scholar 

  • Liu C-M, McLean PA, Sookdeo CC, Cannon FC (1991) Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl Environ Microbiol 57:1799–1804

    CAS  PubMed  Google Scholar 

  • Llewellyn D, Last D (1996) Genetic engineering of crops for tolerance to 2, 4-D. In: Duke SO (ed) Herbicide-Resistant Crops. CRC Press, Boca Raton, Florida, USA, pp 159–174

    Google Scholar 

  • Locke MA, Zablotowicz RM, Reddy KN (2008) Integrating soil conservation practices and glyphosate-resistant crops: impacts on soil. Pest Manag Sci 64:457–469

    CAS  PubMed  Google Scholar 

  • Lorenzatti E, Maitre MI, Argelia L, Lajmanovich R, Peltzer P, Anglada M (2004) Pesticide residues in immature soybeans of Argentina croplands. Fresenius Environ Bull 13:675–678

    CAS  Google Scholar 

  • Lydon J, Duke SO (1999) Inhibitors of glutamine biosynthesis. In: Singh BK (ed) Plant Amino Acids: Biochemistry and Biotechnology. Marcel Dekker, New York, USA, pp 445–464

    Google Scholar 

  • Malarkey T (2003) Human heath concerns with GM crops. Mut Res 544:217–221

    CAS  Google Scholar 

  • Mallory-Smith C, Zapiola M (2008) Gene flow from glyphosate-resistant crops. Pest Manag Sci 64:428–440

    CAS  PubMed  Google Scholar 

  • Mamy L, Barriuso E (2005) Glyphosate adsorption in soils compared to herbicides replaced with the introduction of glyphosate resistant crops. Chemosphere 61:844–855

    CAS  PubMed  Google Scholar 

  • Mamy L, Barriuso E, Gabrielle B (2005) Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops. Pest Manag Sci 61:905–916

    CAS  PubMed  Google Scholar 

  • Mamy L, Gabrielle B, Barriuso E (2008) Measurement and modeling of glyphosate fate compared with that of herbicides replaced as a result of the introduction of glyphosate-resistant oilseed rape. Pest Manag Sci 64:262–275

    CAS  PubMed  Google Scholar 

  • Matringe M, Sailland A, Pelissier B, Roland A, Zind O (2005) p-Hydroxyphenylpyruvate dioxy-genase inhibitor-resistant plants. Pest Manag Sci 61:269–276

    CAS  PubMed  Google Scholar 

  • McClean GD, Evans G (eds) (1995) Herbicide-resistant crops and pastures in australian farming systems. Bureau of Resource Sciences, Australia, p 294

    Google Scholar 

  • McNaughton J, Roberts M, Smith B, Rice D, Hinds M, Schmidt J, Locke M, Brink K, Rood T, Layton R, Lamb I, Delaney B (2007) Comparison of broiler performance when fed diets containing event DP-356Ø43–5 (Optimum GAT), nontransgenic near-isoline control or commercial soybean meal, hulls, and oil. Poult Sci 86:2569–2581

    CAS  PubMed  Google Scholar 

  • Means NE, Kremer RJ (2007) Influence of soil moisture on root colonization of glyphosate-treated soybean by Fusarium species. Commun Soil Sci Plant Anal 38:1713–1720

    CAS  Google Scholar 

  • Means NE, Kremer RJ, Ramsier C (2007) Effects of glyphosate and foliar amendments on activity of microorganisms in the soybean rhizosphere. J Environ Sci Health, Part B: Pest Food Contam Agri Wastes 42:125–132

    CAS  Google Scholar 

  • Moorman TB, Becerril JM, Lydon JM, Duke SO (1992) Production of hydroxybenzoic acids by Bradyrhizobium japonicum strains after treatment with glyphosate. J Agri Food Chem 40:289–293

    CAS  Google Scholar 

  • Nail EL, Young DL, Schillinger WF (2006) Diesel and glyphosate price changes benefit the economics of conservation tillage versus traditional tillage. Soil Till Res 94:321–327

    Google Scholar 

  • Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agri Food Chem 55:3540–3545

    Google Scholar 

  • Nelson DS, Bullock GC (2003) Simulating a relative environmental effect of glyphosate-resistant soybeans. Ecol Econ 45:273–278

    Google Scholar 

  • Nelson KA, Renner KA, Hammerschmidt R (2002) Cultivar and herbicide selection affects soybean development and incidence of Sclerotinia stem rot. Agron J 94:1270–1281

    CAS  Google Scholar 

  • Neve P (2008) Simulation modeling to understand the evolution and management of glyphosate resistance in weeds. Pest Manag Sci 64:392–401

    CAS  PubMed  Google Scholar 

  • Nida DL, Patzer S, Harvey P, Stipanovic R, Wood R, Fuchs RL (1996) Glyphosate-tolerant cotton: The composition of the cottonseed is equivalent to that of conventional cottonseed. J Agri Food Chem 44:1967–1974

    CAS  Google Scholar 

  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat Bio-technol 22:1110–1114

    CAS  Google Scholar 

  • Nijiti VN, Myers O, Schroeder D, Lightfoot DA (2003) Roundup Ready soybean: glyphosate effects on Fusarium solani root colonization and sudden death syndrome. Agron J 95:1140–1145

    Google Scholar 

  • Obert JC, Ridley WP, Schneider RW, Riordan SG, Nemeth MA, Trujillo WA, Breeze ML, Sorbet R, Astwood JD (2004) The composition of grain and forage from glyphosate tolerant wheat MON 71800 is equivalent to that of conventional wheat (Triticum aestivum L.). J Agri Food Chem 52:1375–1384

    CAS  Google Scholar 

  • Oliver MJ, Quisenberry JE, Trolinder NLG, Keim DL (1998) Regeneration of genetically modified whole plant from plant cell transfected with DNA sequence comprising regulatory regions and genes for phenotype-regulating protein, recombinase, and genetic repressor. US Patent 283 604

    Google Scholar 

  • Owen MDK (2008) Weed species shifts in glyphosate-resistant crops. Pest Manag Sci 64:377–387

    CAS  PubMed  Google Scholar 

  • Ozturk L, Yazici A, Eker S, Gokmen O, Römheld V, Cakmak I (2007) Glyphosate inhibition of ferric reductase activity in iron deficient sunflower roots. New Phytol 177:899–906

    PubMed  Google Scholar 

  • Padgette SR, Taylor NB, Nida DL, Bailey MR, MacDonald J, Holden LR, Fuchs RL (1996) The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. J Agri Food Chem 126:702–716

    CAS  Google Scholar 

  • Pankey JH, Griffin JL, Colyer PD, Schneider W, Miller DK (2005) Preemergence herbicide and glyphosate effects on seedling disease in glyphosate-resistant cotton. Weed Technol 19:312–318

    CAS  Google Scholar 

  • Penna JA, Lema D (2003) Adoption of herbicide tolerant soybeans in Argentina: an economic analysis. In: Kalaitzandonakes N (ed) Economic and environmental impacts of agrotechnol-ogy. Kluwer-Plenum Publ, New York, USA, pp 203–220

    Google Scholar 

  • Perez-Jones A, Park K-W, Polge N, Colquhoun J, Mallory-Smith CA (2007) Investigating the mechanisms of glyphosate resistance in Lolium multiflorum. Planta 226:395–404

    CAS  PubMed  Google Scholar 

  • Pline WA, Wilcut JW, Duke SO, Edmisten KL, Wells R (2002a) Tolerance and accumulation of shikimic acid in response to glyphosate applications in glyphosate-resistant and conventional cotton (Gossypium hirsutum L.). J Agri Food Chem 50:506–512

    CAS  Google Scholar 

  • Pline WA, Viator R, Wilcut JW, Edmisten KL, Thomas J, Wells R (2002b) Reproductive abnormalities in glyphosate-resistant cotton caused by lower CP4-EPSPS levels in the male reproductive tissue. Weed Sci 50:438–447

    CAS  Google Scholar 

  • Pline-Srnic W (2005) Technical performance of some commercial glyphosate-resistant crops. Pest Manag Sci 61:225–234

    CAS  PubMed  Google Scholar 

  • Powell JR, Swanton CJ (2008) A critique of studies evaluating glyphosate effects on diseases associated with Fusarium spp. Weed Res 48:307–318

    CAS  Google Scholar 

  • Powell RG, Plattner RD, Suffness M (1990) Occurrence of sesbanimide in seeds of toxic Sesbania species. Weed Sci 38:148–152

    CAS  Google Scholar 

  • Powles SB (2008a) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365

    CAS  Google Scholar 

  • Powles SB (2008b) Evolution in action: glyphosate-resistant weeds threaten world crops. Outlooks Pest Manag 16:256–259

    Google Scholar 

  • Preston C, Wakelin AM (2008) Resistance to glyphosate from altered translocation patterns. Pest Manag Sci 64:372–376

    CAS  PubMed  Google Scholar 

  • Reddy KN (2004) Weed control and species shift in bromoxynil- and glyphosate-resistant cotton (Gossypium hirsutum) rotation systems. Weed Technol 18:131–139

    CAS  Google Scholar 

  • Reddy KN, Zablotowicz RM (2003) Glyphosate-resistant soybean response to various salts of glyphosate and glyphosate accumulation in soybean nodules. Weed Sci 51:496–502

    CAS  Google Scholar 

  • Reddy KN, Duke SO, Rimando AM (2004) Aminomethylphosphonic acid, a metabolite of glyphosate, causes injury in glyphosate-treated, glyphosate-resistant soybean. J Agri Food Chem 52:5139–5143

    CAS  Google Scholar 

  • Reddy KN, Abbas HK, Zablotowicz RM, Abel CA, Koger CH (2007) Mycotoxin occurrence and Aspergillus flavus soil propagules in a corn and cotton glyphosate-resistant cropping systems. Food Additives Contaminants 24:1367–1373

    CAS  Google Scholar 

  • Reddy KN, Rimando AM, Duke SO, Nandula VK (2008) Aminomethylphosphonic acid accumulation in plant species treated with glyphosate. J Agri Food Chem 56:2125–2130

    CAS  Google Scholar 

  • Reiger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2386–2388

    Google Scholar 

  • Ridley WP, Sidhu RS, Pyla PD, Nemeth MA, Breeze ML, Astwood JD (2002) Comparison of the nutritional profile of glyphosate-tolerant corn event NK603 with that of conventional corn (Zea mays L.). J Agri Food Chem 50:7235–7243

    CAS  Google Scholar 

  • Ruhland M, Engelhardt G, Pawlizki K (2004) Distribution and metabolism of D/L, L- and D-glufosinate in transgenic, glufosinate-tolerant crops of maize (Zea mays L. spp. mays) and oilseed rape (Brassica napus L. var. napus) (dagger). Pest Manag Sci 60:691–696

    CAS  PubMed  Google Scholar 

  • Saji H, Nakajim N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosaf Res 4:217–222

    CAS  Google Scholar 

  • Sandmann G, Misawa N, Böger P (1996) Steps toward genetic engineering of crops resistant against bleaching herbicides. In: Duke SO (ed) Herbicide-resistant Crops. CRC Press, USA, pp 189–200

    Google Scholar 

  • Sankula S (2006) Quantification of the impacts on U.S. agriculture of biotechnology-derived crops planted in 2005 national center for food and agricultural policy. Washington, USA 110 p

    Google Scholar 

  • Sanogo S, Yang XB, Lundeen P (2001) Field response of glyphosate-tolerant soybean to herbicides and sudden death syndrome. Plant Dis 85:773–779

    CAS  Google Scholar 

  • Schabenberger O, Kells JJ, Penner D (1999) Statistical tests for hormesis and effective dosage in herbicide dose-response. Agron J 91:713–721

    CAS  Google Scholar 

  • Scheffler JS, Dale PJ (1994) Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgen Res 3:263–278

    CAS  Google Scholar 

  • Schonherr J, Schreiber L (2004) Interactions of calcium ions with weakly acidic active ingredients slow cuticular penetration: a case study with glyphosate. J Agri Food Chem 52:6546–6551

    Google Scholar 

  • Sen Gupta A, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplast Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1633

    CAS  Google Scholar 

  • Shaw DR, Bray CS (2003) Foreign material and seed moisture in glyphosate-resistant and conventional soybean systems. Weed Technol 17:389–393

    Google Scholar 

  • Shiptalo MJ, Malone RW, Owens LB (2008) Impact of glyphosate-tolerant soybean and glufosinate-tolerant corn production on herbicides losses in surface runoff. J Environ Qual 37:401–408

    Google Scholar 

  • Shivrain VK, Burgos NR, Anders MM, Rajguru SN, Moore J, Sales MA (2007) Gene flow between Clearfield rice and red rice. Crop Protect 26:349–356

    CAS  Google Scholar 

  • Shukla MK, Lal R, Ebinger M (2003) Tillage effects on physical and hydrobiological properties of a Typic Argiaquoll in central Ohio. Soil Sci 168:802–811

    CAS  Google Scholar 

  • Sidhu RS, Hammond BG, Fuchs RL, Mutz JN, Holden LR, George B, Olson T (2000) Glyphosate-tolerant corn: the composition and feeding value of grain from glyphosate-tolerant corn is equivalent to that of conventional corn (Zea mays L.). J Agri Food Chem 48:2305–2312

    CAS  Google Scholar 

  • Siehl DL, Castle LA, Gorton R, Chen YH, Bertain S, Cho H-J, Keenan R, Liu D, Lassner MW (2005) Evolution of a microbial acetyltransferase for modification of glyphosate: a novel tolerance strategy. Pest Manag Sci 61:235–240

    CAS  PubMed  Google Scholar 

  • Siehl DL, Castle LA, Gorton R, Keenan RJ (2007) The molecular basis of glyphosate resistance by an optimized microbial acetyltransferase. J Biol Chem 282:11446–11455

    CAS  PubMed  Google Scholar 

  • Simonsen L, Fomsgaard IS, Svensmark B, Spliid NH (2008) Fate and availability of glyphosate and AMPA in agricultural soil. J Environ Sci Health, Part B: Pesticides Food Contaminants Agri Wastes 43:365–375

    CAS  Google Scholar 

  • Simpson DM, Wright TR, Chambers RS, Peterson MA, Cui C, Robinson AE, Richburg JS, Ruen DC, Ferguson S, Maddy BE, Schreder EF (2008) Dow AgroSciences herbicide tolerance traits in corn and soybean. Proc N Central Weed Sci Soc, Champaign, IL, USA

    Google Scholar 

  • Soltani N, Shropshire C, Sikkema PH (2006) Control of volunteer glyphosate-tolerant maize (Zea mays) in glyphosate-tolerant soybean (Glycine max). Crop Protect 25:178–181

    CAS  Google Scholar 

  • Stalker DM, Kiser JA, Baldwin G, Coulombe B, Houck CM (1996) Cotton weed control using the BXN system. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, FL, pp 93–105

    Google Scholar 

  • Stella J, Ryan M (2004) Glyphosate herbicide formulation: A potentially lethal ingestion. Emerg Med Australas 16:235–239

    PubMed  Google Scholar 

  • Sten E, Skov PS, Anderson SV, Torp AM, Olesen A, Bindlsley-Jensen U, Poulsen LK, Bindsley-Jensen C (2004) A comparative study of the allergenic potency of wild-type and glyphosate-tolerant gene-modified soybean cultivars. Acta Pathologica Microbiologica Immunologica Scandinavica 112:21–28

    CAS  Google Scholar 

  • Streber WR, Kutschka U, Thomas F, Pohlenz H-D (1994) Expression of a bacterial gene in trans-genic plants confers resistance to the herbicide phenmedipham. Plant Mol Biol 25:977–987

    CAS  PubMed  Google Scholar 

  • Surov T, Aviv D, Aly R, Joel DM, Goldman-Guez T, Gressel J (1998) Generation of transgenic asumlam-resistant potatoes to facilitate eradications of parasitic broomrapes (Orobanche spp.) with the sul gene as the selectable marker. Theor Appl Genet 96:132–137

    CAS  Google Scholar 

  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci 61:246–257

    CAS  PubMed  Google Scholar 

  • Taylor ML, Stanisiewski EP, Riordan SG, Nemeth MA, George B, Hartnell GF (2004) Comparison of broiler performance when fed diets containing Roundup Ready (event RT73), nontrans-genic control, or commercial canola meal. Poultry Sci 83:456–461

    CAS  Google Scholar 

  • Taylor M, Hartnell G, Lucas D, Davis S, Nemeth M (2007) Comparison of broiler performance and carcass parameters when fed diets containing soybean meal produced from glyphosate -tolerant (MON 89788), control, or conventional reference soybeans. Poult Sci 86:2608–2614

    CAS  PubMed  Google Scholar 

  • Teshima R, Akiyama H, Okunuki H, Sakushima J, Goda Y, Onodera H, Sawada J, Toyoda M (2000) Effect of GM and non-GM soybeans on the immune system of BN rats and B10A mice. Shokuhin Eiseigaku Zasshi 41:188–193

    CAS  Google Scholar 

  • Thomas WE, Pline-Srnic WA, Thomas JF, Edmisten KL, Wells R, Wilcut JW (2004) Glyphosate negatively affects pollen viability but not pollination and seed set in glyposate-resistant corn. Weed Sci 52:725–734

    CAS  Google Scholar 

  • Tutel'ian VA, Aksiuk IN, Sorokina EI, Aleshko-Ozhevskii IP, Gapparov MM, Zhminchenko VM, Kodentsova VM, Nikol'skaia GV (2001) Medical and biological assessment of genetically modified corn line MON 810 resistant to European corn borer and line GA 21 resistant to glyphosate: a chemical study. Voprosy Pitaniia 70:25–27

    PubMed  Google Scholar 

  • Valverde BE (2007) Status and management of grass-weed herbicide resistance in Latin America. Weed Technol 21:310–323

    CAS  Google Scholar 

  • Vande Berg BJ, Hammer PE, Chun BL, Schouten LC, Carr B, Guo R, Peters C, Hinson TK, Beilinson V, Shekita A, Deter R, Chen Z, Samoylov V, Bryant CT, Stauffer ME, Eberle T, Moellenbeck DJ, Carozzi NB, Koziel MG, Duck NB (2008) Characterization and plant expression of glyphosate-tolerant enolpyruvylshikimate phosphate synthase. Pest Manag Sci 64:340–345

    Google Scholar 

  • Vasil IK (1996) Phosphinothricin-resistant crops. In: Duke SO (ed) Herbicide-resistant crops. CRC Press, Boca Raton, FL, pp 85–91

    Google Scholar 

  • Velini ED, Alves E, Godoy MC, Meschede DK, Souza RT, Duke SO (2008) Glyphosate applied at low doses can stimulate plant growth. Pest Manag Sci 64:489–496

    CAS  PubMed  Google Scholar 

  • Vencill WK (ed) (2002) Herbicide Handbook, 8th edn. Weed Science Society of America, USA, p 493

    Google Scholar 

  • Vermij P (2006) Liberty Link rice raises specter of tightened regulations. Nat Biotechnol 24:1301–1302

    CAS  PubMed  Google Scholar 

  • Vila-Aiub MM, Vidal RA, Balbi MC, Gundel PE, Trucco F, Ghersa CM (2008) Glyphosate-resistant weeds of South American cropping systems. Pest Manag Sci 64:366–371

    CAS  PubMed  Google Scholar 

  • Wagner R, Kogan M, Parada AM (2003) Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L.). Weed Biol Manag 3:228–232

    CAS  Google Scholar 

  • Wakelin AM, Preston C (2006) A target-site mutation is present in a glyphosate-resistant Lolium rigidum population. Weed Res 46:703–705

    Google Scholar 

  • Warwick SI, Legere A, Simard M-J, James T (2008) Do escaped transgenes persist in nature? the case of an herbicide resistant transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    CAS  PubMed  Google Scholar 

  • Wauchope RD, Estes TL, Allen R, Baker JL, Hornsby AG, Jones RL, Richards RP, Gustosfson DI (2002) Predicted impact of transgenic, herbicide tolerant corn on drinking water quality in vulnerable watersheds of the mid-western USA. Pest Manag Sci 58:146–160

    CAS  PubMed  Google Scholar 

  • Werth JA, Preston C, Taylor IN, Charles GW, Robets GN, Baker J (2008) Managing the risk of glyphosate ressistance in Australian glyphosate-resistant cotton production systems. Pest Manag Sci 64:417–421

    CAS  PubMed  Google Scholar 

  • White AK, Metcalf WW (2004) Two C-P lyase operons in Pseudomonas stutzeri and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. J Bacteriol 186:4730–4739

    CAS  PubMed  Google Scholar 

  • Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165

    CAS  PubMed  Google Scholar 

  • Wright TR, Lira JM, Merlo DJ, Hopkins N (2005) A bacterial gene for an aryloxyalkanoate dioxygenase conferring resistance to phenoxy auxin and aryloxyphenoxypropionate herbicides. Patent Application WO2005US1437 20050502

    Google Scholar 

  • Yasuor H, Abu-Abied M, Belausov E, Madmony A, Sadot E, Riov J, Rubin B (2006) Glyphosate-induced anther indehiscence in cotton is partially temperature dependent and involves cytoskele-ton and secondary wall modifications and auxin accumulation. Plant Physiol 141:1306–1315

    CAS  PubMed  Google Scholar 

  • York AC, Steward AM, Vidrine PR, Culpepper AS (2004) Control of volunteer glyphosate-resistant cotton in glyphosate-resistant soybean. Weed Technol 18:532–539

    CAS  Google Scholar 

  • Zablotowicz RM, Reddy KN (2004) Impact of glyphosate on the Bradyrhizobium japonicum symbiosis with glyphosate-resistant transgenic soybean: a mini review. J Envron Qual 33:825–831

    CAS  Google Scholar 

  • Zablotowicz RM, Reddy KN (2007) Nitrogenase activity, nitrogen content, and yield responses to glyphosate in glyphosate-resistant soybean. Crop Prot 26:370–376

    CAS  Google Scholar 

  • Zapiola ML, Campbell CK, Butler MD, Mallory-Smith C (2008) Escape and establishment of transgenic glyphosate-resistant creeping bentgrass Agrostis stolonifera in Oregon, USA: a 4-year study. J Appl Ecol 45:486–494

    Google Scholar 

  • Zhu Y, Li D, Wang F, Yin J, Jin H (2004) Nutritional assessment and fate of DNA of soybean meal from Roundup Ready or conventional soybeans using rats. Arch Anim Nutr 58:295–310

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Duke, S.O., Cerdeira, A.L. (2010). Transgenic Crops for Herbicide Resistance. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04812-8_3

Download citation

Publish with us

Policies and ethics