Skip to main content

Abstract

We study the problem of how well a typical multivariate polynomial can be approximated by lower degree polynomials over \({\mathbb{F}_{2}}\). We prove that, with very high probability, a random degree d + 1 polynomial has only an exponentially small correlation with all polynomials of degree d, for all degrees d up to \(\Theta\left(n\right)\). That is, a random degree d + 1 polynomial does not admit a good approximation of lower degree. In order to prove this, we prove far tail estimates on the distribution of the bias of a random low degree polynomial. Recently, several results regarding the weight distribution of Reed–Muller codes were obtained. Our results can be interpreted as a new large deviation bound on the weight distribution of Reed–Muller codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N.: On the density of sets of vectors. Discrete Math. 46, 199–202 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Ben-Eliezer, I., Krivelevich, M.: Small sample spaces cannot fool low degree polynomials. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 266–275. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Ben-Sasson, E., Kopparty, S.: Affine dispersers from subspace polynomials. In: proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pp. 65–74 (2009)

    Google Scholar 

  4. Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace and time-space trade-offs. J. of Computer and System Sciences 45(2), 204–232 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, G., Honkala, I., Litsyn, S., Lobstein, A.: Covering Codes. North Holland, Amsterdam (1997)

    MATH  Google Scholar 

  6. Frankl, P.: On the trace of finite sets. J. of Combinatorial Theory, Series A 34(1), 41–45 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gowers, W.T.: A new proof of Szemerédi’s theorem. Geometric and Functional Analysis 11(3), 465–588 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Green, B., Tao, T.: The distribution of polynomials over finite fields, with applications to the Gowers Norm (submitted) (2007)

    Google Scholar 

  9. Jukna, S.: Extremal Combinatorics with Applications in Computer Science. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  10. Gopalan, P., Klivans, A., Zuckerman, D.: List-decoding Reed–Muller codes over small fields. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC), pp. 265–274 (2008)

    Google Scholar 

  11. Kaufman, T., Lovett, S.: Average case to worst case reduction for polynomials. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 166–175 (2008)

    Google Scholar 

  12. Kaufman, T., Lovett, S.: List size vs. decoding radius for Reed–Muller codes (submitted)

    Google Scholar 

  13. Kasami, T., Tokura, N.: On the weight structure of Reed–Muller codes. IEEE Transactions on Information Theory 16(6), 752–759 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kasami, T., Tokura, N., Azumi, S.: On the weight enumeration of weights less than 2. 5d of Reed–Muller codes 30(4), 380–395 (1976)

    MathSciNet  MATH  Google Scholar 

  15. Keevash, P., Sudakov, B.: Set systems with restricted cross-intersections and the minimum rank of inclusion matrices. SIAM J. of Discrete Mathematics 18(4), 713–727 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. MacWilliams, J., Sloane, N.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)

    MATH  Google Scholar 

  17. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. of Computer and System Sciences 49(22), 149–167 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Razborov, A.: Lower bounds on the size of bounded depth circuits over a complete basis with logical addition. Math. Notes 41(4), 333–338 (1987); Translated from Matematicheskie Zametki 41(4), 598–607 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Smolensky, R.: Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In: Proceedings of the 19th Annual ACM Symposium on the Theory of Computation (STOC), pp. 77–82 (1987)

    Google Scholar 

  20. Viola, E.: Correlation bounds for polynomials over {0,1}. SIGACT News 40(1), 27–44 (2009)

    Article  Google Scholar 

  21. Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for GF(2) polynomials and multiparty protocols. In: Proceedings of the 22nd IEEE Conference on Computational Complexity (CCC), pp. 141–154 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ben-Eliezer, I., Hod, R., Lovett, S. (2009). Random Low Degree Polynomials are Hard to Approximate. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2009 2009. Lecture Notes in Computer Science, vol 5687. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03685-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03685-9_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03684-2

  • Online ISBN: 978-3-642-03685-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics