Skip to main content

UV Solar Radiation in Polar Regions: Consequences for the Environment and Human Health

  • Chapter
UV Radiation in Global Climate Change

Abstract

Over the past few years, some preventive measures have been adopted for restricting the growth of human impact on the terrestrial environment and to limit gaseous emissions into the atmosphere, (e.g., the Vienna Convention for the Protection of the Ozone Layer, 1985, and the Montreal Protocol, 1987). The monitoring of minor atmospheric gases presently assumes a double significance: (1) to better understand the photochemistry process involved and the environmental problems they produce; and (2) to test the effectiveness of adopted mitigation techniques. Studies on stratospheric ozone are particularly relevant because it is a filter for ultraviolet (UV) and has a high sensitivity to chlorofluorocarbon (CFC) presence. During the past 20 years, the trend of ozone depletion has been strongly negative. Some signals have recently been observed that seem to indicate there has been a slight recovery, even if the evidence for this tendency is disguised by the difficulty in separating the anthropogenic impact from the natural variability. Human impact is much more discernible in polar regions making them privileged areas for carrying out this type of research.

In light of these considerations, studies on solar radiation flux have become important for investigating the properties of the atmosphere and its minor components, and also for evaluating the available radiant energy for technical applications. Moreover, the ever-increasing interest in regard to the consequences of human activity on the biosphere has further contributed to the development of these studies, especially in the UV spectral region. As a result, there has been an increase in the number of instrument sites and radiometric networks. Many decisions affecting civil society are made using data from these networks and consequently, it is essential that the effects of environmental factors are well understood.

Few fields of research involve such a mixture of measurement techniques, instrumental characteristics, and physical atmospheric properties. The major environmental factors include radiative transfer of solar UV through the atmosphere, atmospheric physics, and aerosol composition and content. The management of international networks and the development of instruments are the main limiting factors for good data acquisition.

This work gives a concise review and provides guidance regarding the consequences and risks of solar UV radiation on environmental and human health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez-Madrigal M and Pérez-Peraza J (2005) Analysis of the evolution of the Antarctic ozone hole size. J. Geophys. Res. 110, D02107, DOI:10.1029/2004JD004944

    Article  Google Scholar 

  • Anav A, Moriconi ML, Giannoccolo S, and Di Menno M (1996) Field measurements of global UV-B radiation: a comparison between a broad-band radiometer and a Brewer spectrophotometer. Il Nuovo Cimento C(4), Vol. 14, July–August, pp. 505–516

    Article  Google Scholar 

  • Anav A, Rafanelli C, Di Menno I, and Di Menno M (2004) An algorithm for irradiance and effective dose rates using solar spectral UV irradiance at few selected wavelengths. Rad. Prot. Dosim. V. 111 (3), 239–250

    Article  CAS  Google Scholar 

  • Baldwin MP and Dunkerton TJ (1998) Quasi-biennial modulation of the southern hemisphere stratospheric polar ozone. Geophys. Res. Lett. 25: 3343–3346

    Article  Google Scholar 

  • Banks PM, Huntress WT, Hudson RD, Reber CA, Barth CA, Farmer CB, Geller MA, Gille JC, London J, Megill LR, Russell JM-, Roble RG, Stolarski RS, and Waters JW (1978) Upper Atmosphere Research Satellite Program. JPL Publication 78-54 British Antarctic Survey (BAS) (2008) http://www.antarctica.ac.uk/about_antarctica/tourism/ index.php

    Google Scholar 

  • Bernhard G, Booth CR, Ehramjian JC, Stone R, and Dutton EG (2007) Ultraviolet and visible radiation at Barrow, Alaska: Climatology and influencing factors on the basis of version 2 National Science Foundation network data. J. Geophys. Res. 112: D09101, DOI:10.1029/ 2006JD007865

    Article  Google Scholar 

  • Bernhard G (2008) Instrumental and Methodological Developments in UV Research. Proceedings of Quadrennial Ozone Symposium 2008. Tromsø Jun 29th–Jul. 5th

    Google Scholar 

  • Bigelow DS, Slusser JR, Beaubien AF, and Gibson JH (1998) The USDA Ultraviolet Radiation Monitoring Program. Bulletin of the American Meteorological Society 79: 601–615

    Article  Google Scholar 

  • Bojkov RD, Bishop L, and Fioletov VE (1995) Total ozone trends from quality controlled ground based data (1964-1994). J. Geoph. Res. 100: 25867–25876

    Article  Google Scholar 

  • Bojkov RD, Balis DS, and Zerefos CS (1998) Characteristics of the ozone decline in the northern Polar and middle latitudes during the winter/spring. Meteorolog. Atmos. Phys. 69: 119–135

    Article  Google Scholar 

  • Caldwell MM, Camp LB, Warner CW, and Flint SD (1986) Action Spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: Worrest RC, Caldwell MM (eds) Stratospheric Ozone Reduction, Solar Ultraviolet Radiation and Plant Life. Springer–Verlag, pp. 87–111

    Google Scholar 

  • Chaney EK and Sliney DH (2005) Re-evaluation on the ultraviolet hazard action spectrum. The impact of spectral bandwidth. Health Physics Society 89: 322–332

    Article  CAS  Google Scholar 

  • Chapman S (1930) A theory of upper-atmospheric ozone. Memoirs of the Royal Meteorological Society 3: 103–125

    Google Scholar 

  • Dahlback A (1996) Measurements of biologically effective UV doses, total ozone abundances, and cloud effects with multi-channel, moderate bandwidth filter. Applied Optics 35: 6514–6521

    Article  CAS  Google Scholar 

  • Dahlback A, Gelsor N, Stamnes J, and Gjessing Y (2007) UV measurements in the 3000–5000 m altitude region in Tibet. J. Geophys. Res. 112: D9, D09308, 10.1029/2006JD007700

    Google Scholar 

  • Damiani A, Storini M, Laurenza M, Rafanelli C, Piervitali E, and Cordaro EG (2006) Southern ozone variations induced by solar particle events during 15 January-5 February 2005. J. Atmospheric and Solar-Terrestrial Physics 68(17): 2042–2052

    Article  Google Scholar 

  • Damiani A, Storini M, Laurenza M, Diego P, and Rafanelli C (2008) Ozone variability related to several SEP events occurring during solar cycle no. 23. J. Adv. Space Res. DOI:10.1016/ j.asr.2008.06.006

    Google Scholar 

  • De Gruijl FR, Longstreth J, Norval M, Cullen AP, Slaper H, Kripke ML, Takizawag Y, and van der Leun JC (2003) Health effects from stratospheric ozone depletion and interactions with climate change. Photochem. Photobiol. Sci. 2: 16–28

    Article  Google Scholar 

  • Diaz S, Booth CR, Armstrong R, Brunat C, Cabrera S, Camilion C, Casiccia C, Deferrari G, Fuenzalida H, Lovengreen C, Paladini A, Pedroni J, Rosales A, Zagarese H, and Vernet M (2005) Multichannel radiometer calibration: a new approach. Applied Optics 44: 26

    Article  Google Scholar 

  • Diffey BL (1984) Personal ultraviolet radiation dosimetry with polysulphone film badges. Photodermatology 1: 151–157

    CAS  Google Scholar 

  • Diffey BL (1989) Ultraviolet radiation dosimetry with polysulphone film. In: Diffey BL (ed) Radiation Measurement in Photobiology, Academic Press, New York, 136–159

    Google Scholar 

  • Di Menno I, Moriconi ML, Di Menno M, Casale GR, and Siani AM (2002) Spectral ultraviolet measurements by a multichannel monitor and a Brewer spectroradiometer: a field study. Rad. Prot. Dosimetry. 102(3): 259–263

    Google Scholar 

  • Di Menno I, Rafanelli C, De Simone S, and Di Menno M (2007) High performance spectrograph for solar UV 250-400 band. Proceedings of Optics and Photonics, San Diego, CA, Aug. 26–30

    Google Scholar 

  • Egorova TA, Rozanov EV, Schlesinger ME, Andronova NG, Malyshev SL, Karol IL, and Zubov VA (2001) Assessment of the effect of the Montreal Protocol on atmospheric ozone. Geophys. Res. Lett. 8: 2389–2392

    Article  Google Scholar 

  • Engel A, Möbius T, Haase HP, Bönisch H, Wetter T, Schmidt U, Levin I, Reddmann T, Oelhaf H, Wetzel G, Grunow K, Huret N, and Pirre M (2005) On the observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003. Atmos. Chem. Phys. Discuss. 5: 7457–7496

    Article  Google Scholar 

  • Epstein PR (1998) Global warming and vector-borne disease. Lancet 351: 1737–1738

    Article  CAS  Google Scholar 

  • Farman JC, Gardiner BG, and Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal CLOx/NOx interaction. Nature 315: 207–210

    Article  CAS  Google Scholar 

  • Fay G (2000) Marketing and Guiding Alaska Tourism-Defining our Roles. Proceedings of the 7th Annual Ecotourism in Alaska Conference, Feb. 3rd, Anchorage, AK

    Google Scholar 

  • Garcia RR and Solomon S (1987) A possible relationship between interannual variability in Antarctic ozone and the quasi-biennial oscillation. Geophys. Res. Lett. 14: 848–851

    Article  CAS  Google Scholar 

  • Giovanelli G, Bortoli D, Petritoli A, Castelli E, Kostadinov E, Ravegnani F, Redaelli G, Volk CM, Cortesi U, Bianchini G, and Carli B (2005) Stratospheric minor gas distribution over the Antarctic Peninsula during the APE-GAIA campaign. International Journal of Remote Sensing 26(16): 3343–3360

    Article  Google Scholar 

  • Grainger RG and Highwood EJ (2003) Changes in stratospheric composition, chemistry, radiation and climate caused by volcanic eruptions. Geological Society, London, Special Publications 213: 329–347

    Google Scholar 

  • Grooß J, Konopka P, and Müller R (2005) Ozone chemistry during the 2002 Antarctic vortex split. J. Atmos. Sci. 62(3): 860–870

    Article  Google Scholar 

  • Han Z, Chongping J, and Libo Z (2000) QBO Signal in total ozone over Tibet. Advances Atmos. Sci. 17(4): 562–568

    Article  Google Scholar 

  • International Association of Antarctica Tour Operators (IAATO) (2008) http://www.iaato.org/ index.html

    Google Scholar 

  • International Panel on Climate Change (IPCC) (2007) The Physical Science Basis. UNEP-WMO

    Google Scholar 

  • Kimlin MG and Parisi (1999) Ultraviolet protective capabilities of hats under two different atmospheric conditions. http://www.photobiology.com/photobiology99

    Google Scholar 

  • Knudsen BM, Harris NRP, Andersen SB, Christiansen B, Larsen N, Rex M, and Naujokat B (2004) Extrapolating future Arctic ozone losses. Atmos. Chem. Phys. 4: 1849–1856

    Article  CAS  Google Scholar 

  • Krueger AJ (2001) Mapping of total ozone from space. Geoscience and Remote Sensing Symposium, 2001. IGARSS 01; IEEE 2001 International 3: 1032–1034, DOI:10.1109/IGARSS.2001.976737

    Google Scholar 

  • Labitzke K and van Loon H (1997) Total ozone and the 11-yr sunspot cycle. Journal of Atmospheric and Solar Terrestrial Physics 59(1): 9–19

    Article  CAS  Google Scholar 

  • Lakkala K, Redondas A, Meinander O, Torres C, Koskela T, Cuevas E, Taalas P, Dahlback A, Deferrari G, Edvardsen K, and Ochoa H (2005) Quality assurance of the solar UV network in the Antarctic. Journal of Geophysical Research 110(15): D15101.1-D15101.12

    Google Scholar 

  • Latysheva IV, Belousova EP, Ivanova AS, and Potemkin VL (2007) Circulation conditions of the abnormally cold winter of 2005/2006 over Siberia. Journal of Russian Meteorology and Hydrology 32(9): DOI 10.3103/S106837390709004X

    Google Scholar 

  • Leaf A (1989) Potential health effects of global climatic and environmental changes. N. Engl. J. Med. 321: 1577–1583

    Article  CAS  Google Scholar 

  • Lindfors A and Vuilleumier L (2005) Erythemal UV at Davos (Switzerland), 1926–2003, Estimated usage of total ozone, sunshine duration, and snow depth. Journal Geophysical Research 110:D02104, doi:10.1029/2004jd005231

    Article  Google Scholar 

  • Longstreth J (1991) Anticipated public health consequences of global climate change. Environ. Health Perspect. 96: 139–144

    Article  CAS  Google Scholar 

  • Longstreth J (1999) Public health consequences of global climate change in the United States. Environ. Health Perspect. 107(1): 169–179

    Article  Google Scholar 

  • Manney GL, Krüger K, Pawson S, Minschwaner K, Schwartz MJ, Daffer WH, Livesey NJ, Mlynczak MG, Remsberg EE, Russell III JM, and Waters JW (2008) The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res. 113:D11115, DOI:10.1029/2007JD009097

    Article  Google Scholar 

  • Mariutti GF, Rafanelli C, Bortolin E, Anav A, and Polichetti A (2002) A test in the Arctic area for personal UV dosimetry. Proceedings of the LXXXVIII National Congress of Italian Physics Society, Alghero, Sept. 26-Oct. 1, 2002

    Google Scholar 

  • Mariutti GF, Bortolin E, Polichetti A, Rafanelli C, Anav A, Di Menno I, Casale G, and Di Menno M (2003) UV dosimetry in Antarctica (Baia Terranova): Analysis of data from polysulphone films and GUV 511 radiometer. Proceedings of Optical Science and Technology, SPIE 48th Annual Meeting, San Diego, CA, Aug. 3-8

    Google Scholar 

  • McKinlay AF and Diffey BL (1987) A reference action spectrum for UV induced erythema in human skin. In: Passchier WF, Bosnjakovich BFM (eds) Human Exposure to Ultraviolet Radiation: Risks and Regulations, International Congress Series, pp. 83–87

    Google Scholar 

  • McMichael T, Smith W, Armstrong B, and Lucas R (2006) Solar ultraviolet radiation: Global burden of disease from solar ultraviolet radiation. Environmental Burden of Disease Series, No. 13, WHO Editor, Geneva, Switzerland

    Google Scholar 

  • Molina MJ and Rowland FS (1973) Stratospheric sink for clorofluoromethanes: Chlorine catalyzed destruction or ozone. Nature 249: 810–814

    Article  Google Scholar 

  • Moriconi ML, Rafanelli C, Anav A, Di Menno I, and Di Menno M (1998) Solar radiation and clouds: Polar experimental data and modeling. Proceedings of 4th NySMAC Scientific Seminar, The Arctic and Global Change: Multidisciplinary Approach and International Efforts at Ny Ålesund, Ravello, Italy, March 5–6

    Google Scholar 

  • Müller R, Tilmes S, Grooß JU, Engel A, Oelhaf H, Wetzel G, Huret N, Pirre M, Catoire V, Toon G, and Nakajima H (2007) Impact of mesospheric intrusions on ozone-tracer relations in the stratospheric polar vortex. J. Geophys. Res. 112:D23307, DOI:10.1029/2006JD008315

    Article  Google Scholar 

  • Orsolini YJ and Jackson DR (2008) An estimation of Arctic ozone loss in recent winters based on assimilation of EOS/MLS and SBUV observations. Geophysical Research Abstracts 10:EGU2008-A-06645

    Google Scholar 

  • Orsolini YJ, Randall CE, Manney GL, and Allen DR (2005) An observational study of the final breakdown of the southern hemisphere stratospheric vortex in 2002. Journal of the Atmospheric Sciences 62(3): 735

    Article  Google Scholar 

  • Pazmiño AF, Godin-Beekmann S, Ginzburg M, Bekki S, Hauchecorne A, Piacentini RD, and Quel EJ (2005) Impact of Antarctic polar vortex occurrences on total ozone and UVB radiation at southern Argentinean and Antarctic stations during the 1997–2003 period. J. Geophys. Res. 110:D03103, DOI:10.1029/2004JD005304

    Article  Google Scholar 

  • Rafanelli C (2001) Environmental factors on solar UV measurements. Rad. Prot. Dosim. 97: 423–428

    CAS  Google Scholar 

  • Rafanelli C, Ciattaglia L, Anav A, Valenti C, and Di Menno M (1998) Polar Umkehr profiling during the ozone hole period. Proceedings of 4th NySMAC Scientific Seminar, The Arctic and Global Change: Multidisciplinary Approach and International Efforts at Ny Ålesund, Ravello, Italy, Mar. 5–6, 1998

    Google Scholar 

  • Rafanelli C, Anav A, Di Menno I, Di Menno M, Ciattaglia L, Diaz SB, and Iturraspe R (2000) UV Green Model, SUV 100 & Brewer spectra: an intercomparison in Ushuaia. Proceedings of 2nd SPARC General Assembly, SPARC 2000, Mar del Plata, Argentina, Nov. 6–10, 2000

    Google Scholar 

  • Rafanelli C, Leonardi RM, and Di Menno M (2001) Evaluation of cloud effects on solar UV-B spectral irradiance by a new automatic ground-based Total-Sky Camera. Proceedings of IX Workshop on Italian Research in Antarctic Atmosphere, Roma, Italy, Oct. 22–24, 2001

    Google Scholar 

  • Rafanelli C, Anav A, and Di Menno I (2002) Cloud effect on solar UV-B irradiance at ground: a campaign in the Arctic region. Proceedings of LXXXVIII National Congress of Italian Physics Society, Alghero, Italy, Sept. 26–Oct. 1, 2002

    Google Scholar 

  • Rafanelli C, Casagrande G, Piervitali E, Casu G, Malaspina F, Foti F, and Vuerich E (2005) Automatic cloud coverage evaluation by a ground based Total-Sky Camera. Proceedings of WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, Bucharest, Romania, May 4–7, 2005

    Google Scholar 

  • Rafanelli C, Anav A, Di Menno I, and Di Menno M (2006) The solar UV as an environmental factor: measurements and model. In: Blume Y, Durzan DJ, Smertenko P (eds) Cell Biology and Instrumentation: UV Radiation, Nitric Oxide and Cell Death in Plants. IOS Press, NATO Sciences Series, vol. 371

    Google Scholar 

  • Rafanelli C, De Simone S, Damiani A, Lund C, Erdvardsen K, Svenoe T, and Benedetti E (2008) A first attempt to evaluate the total ozone column by Brewer Spectrophotometer during the arctic winter. Proceedings of Quadrennial Ozone Symposium 2008, Tromsø Jun 29-July 5, 2008

    Google Scholar 

  • Randall CE, Harvey VL, Singleton CS, Bernath PF, Boone CD, and Kozyra JU (2006) Enhanced NOx in 2006 linked to strong upper stratospheric Arctic vortex. Geophys. Res. Lett. 33:L18811, DOI:10.1029/2006GL027160

    Article  Google Scholar 

  • Roscoe HK, Colwell SR, Shanklin JD, Karhu JA, Taalas, P, Gil M, Yela M, Rodriguez S, Rafanelli C, Cazeneuve H, Villanueva C A, Ginsburg M, Diaz SB, de Zafra R L, Muscari G, Redaelli G, and Dragani R, (2005a) Measurements from ground and balloons during APE-GAIA. A polar ozone library. Advances in Space Research 36: 835–845

    Article  CAS  Google Scholar 

  • Roscoe HK, Shanklin JD, and Colwell SR (2005b) Has the Antarctic vortex split before 2002? Journal of the Atmospheric Sciences 62(3): 581–588

    Article  Google Scholar 

  • Russell III JM, Gordley LL, Park JH, Drayson SR, Hesketh WD, Cicerone RJ, Tuck AF, Frederick JE, Harries JE, and Crutzen PJ (1993) The halogen occultation experiment. J. Geophys. Res. 98, D6: 10777-10797

    Google Scholar 

  • Salby ML and Garcia RR (1990) Dynamical perturbations to the ozone layer. Physics Today 43: 38–46

    Article  Google Scholar 

  • SCAR-EBA (2008) Describe the past, understand the present, predict the future. http://www.eba.aq/

    Google Scholar 

  • Schoeberl MR, Douglass AR, Hilsenrath E, Bhartia PK, Beer R, Waters JW, Gunson MR, Froidevaux L, Gille JC, Barnett JJ, Levelt PF, and DeCola P (2006) Overview of the EOS aura mission. IEEE TGARS 44(5): 1066–1074

    Google Scholar 

  • Seppälä A, Verronen PT, Clilverd MA, Randall CE, Tamminen J, Sofieva V, Backman L, and Kyrölä E (2007) Arctic and Antarctic polar winter, NOx and energetic particle precipitation in 2002/2006. Geophys. Res. Lett. 34:L12810, DOI:10.1029/2007GL029733

    Article  Google Scholar 

  • Shindell D, Rind D, Balachandran N, Lean J, and Lonergan P (1999) Solar Cycle Variability, Ozone, and Climate. Science 284: 305–308

    Article  CAS  Google Scholar 

  • Simic S, Weihs P, Vacek A, Kromp-Kolb H, and Fitzka M (2007) Ozone and spectral UV measurements in Austria during 1994–2006: Climatology and investigations of long-and short-term changes. Proceedings of One Century of UV Radiation Research, Davos, Switzerland, Sept. 18–20, 2007

    Google Scholar 

  • Sitnov SA (2004) QBO effects manifesting in ozone, temperature, and wind profiles. Annales Geophysicae 22: 1495–1512

    Article  CAS  Google Scholar 

  • Slaper H, Velders GJM, Daniel JS, de Gruijl FR, and van der Leun JC (1996) Estimates of ozone depletion and skin cancer incidence to examine the Vienna Convention achievements. Nature 384: 256–258; DOI:10.1038/384256a0

    Article  CAS  Google Scholar 

  • Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Reviews of Geophysics 37(3): 275–316

    Article  CAS  Google Scholar 

  • Storini M, A Damiani, and C Rafanelli (2005) Search of solar induced effects on the ozone layer: 1996–2004. Proceeding of 10th Scientific Assembly of the IAGA, Toulouse, France, July 18–29, 2005

    Google Scholar 

  • Stowasser M, Oelhaf H, Ruhnke R, Wetzel G, Friedl-Vallon F, Kleinert A, Kouker W, Lengel A, Maucher G, Nordmeyer H, Reddmann Th, Trieschmann O, von Clarmann T, Fischer H, and Chipperfield MP (2002) A characterization of the warm 1999 Arctic winter by observations and modeling: NOy partitioning and dynamics, J. Geophys. Res. 107(D19), 4376, DOI:10.1029/2001JD001217

    Article  Google Scholar 

  • Strawa A, Drdla K, Fromm M, Pueschel RF, Hoppel KW, Browell EV, Hamill P, and Dempsey DP (2002) Discriminating types Ia and Ib stratospheric clouds in POAM satellite data. J. Geophys Res. 107, DOI:10.1029/2001JD000458

    Google Scholar 

  • Tabazadeh A and Cordero EC (2004) New Directions: Stratospheric ozone recovery in a changing atmosphere. Atmospheric Environment 38: 647–649

    Article  CAS  Google Scholar 

  • Taylor HR (1999) Epidemiology of age-related cataract. Eye 13: 445–448

    Google Scholar 

  • Tie X and Brasseur G (1995) The response of stratospheric ozone to volcanic eruptions: Sensitivity to atmospheric chlorine loading. Geophysical Research Letters 22: 3035–3038

    Article  CAS  Google Scholar 

  • Tilmes S, Müller R, Grooß J-U, and Russell JM-(2004) Ozone loss and chlorine activation in the Arctic winters 1991–2003 derived with the tracer-tracer correlations. Atmos. Chem. Phys. 4: 2181–2213

    Article  CAS  Google Scholar 

  • Todorovich N and Vujovic D (2008) Solar activity, cyclone circulation, and negative anomalies of total ozone content. Geophysical Research Abstracts 10, EGU2008-A-11192

    Google Scholar 

  • Tüg H, Hanken T, and Schrems O (2003) Spectral UV-measurements at NDSC sites in the Arctic (Ny-Ålesund, Spitsbergen) and Antarctica (Neumayer Station). Geophysical Research Abstracts 5: 13022

    Google Scholar 

  • Uchino O, Bojkov RD, Balis DS, Akagi K, Hayashi M, and Kajihara R (1999) Essential characteristics of the Antarctic spring ozone decline, update to 1998. Geophysical Research Letters 26: 1377–1380

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2002) Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2002 Assessment, Geneva, Switzerland

    Google Scholar 

  • Velders G (2008) Importance of the Montreal Protocol for ozone layer and climate. WMO/UNEP Ozone Research Managers, Geneva, Switzerland, May 19, 2002

    Google Scholar 

  • Voigt C, Larsen N, Deshler T, Kröger C, Schreiner J, Mauersberger K, Luo B, Adriani A, Cairo F, Di Donfrancesco G, Ovarlez J, Ovarlez H, Dörnbrack A, Knudsen B, and Rosen J (2003) In situ mountain-wave polar stratospheric cloud measurements: Implications for nitric acid trihydrate formation. J. Geophys. Res. 108(D5): DOI:10.1029/2001JD001185

    Google Scholar 

  • Volker AM and Barrie L (2006) The WMO GAW Programme. Proceeding of Inter-commission Task Team on Quality Management Framework (ICTC-QMF), Geneva, Switzerland, April 25-27, 2006

    Google Scholar 

  • Waters JW, Froidevaux L, Harwood RS, et al. (48 authors) (2006) The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE TGARS 44: 1075–1092

    Google Scholar 

  • Wester U (2006) Polysulphone and spore-film UV-dosimeters compared to two radiation transfer models and an instrument that measures the UV index: an evaluation for a UV-dosimetry study of preschool children in Stockholm. JR Slusser, K Schäfer, A Comerón (eds) Proceedings of Remote Sensing of Clouds and the Atmosphere XI. Vol. 6362

    Google Scholar 

  • WHO (World Health Organization) (1998) Press Release WHO/5, Geneva, Switzerland, July 17, 1998

    Google Scholar 

  • WHO (1999) Ultraviolet radiation: solar radiation and human health. WHO fact sheet 227. http://www.who.int/mediacentre, Geneva, Switzerland

    Google Scholar 

  • WHO (2002) Global Solar UV Index. In: WHO (ed) A Practical Guide. Geneva, Switzerland

    Google Scholar 

  • WHO (2006) Static Fields Environmental Health. Criteria Monograph 232, http://www.who.int/ mediacentre, Geneva, Switzerland

    Google Scholar 

  • WHO (2008a) http://www.who.int/blindness/en/index.html, Geneva, Switzerland

    Google Scholar 

  • WHO (2008b) Ultraviolet radiation and the INTERSUN Programme. http://www.who.int/ uv/health/en/, Geneva, Switzerland

    Google Scholar 

  • WMO (World Meteorological Organization) (2006a) WMO Bulletin 55(4). October, Geneva, Switzerland

    Google Scholar 

  • WMO (2006b) Guide to meteorological instruments and methods of observation. WMO 8, 7th edition, Geneva, Switzerland

    Google Scholar 

  • WMO (2007) http://www.empa.ch/gaw, Geneva, Switzerland

    Google Scholar 

  • Worrest RC, Smythe KD, and Tait AM (1989) Linkages between climate change and stratospheric ozone depletion. In: White JC (ed) Global Climate Change Linkages: Acid Rain, Air Quality, and Stratospheric Ozone. Elsevier Science, New York, ISBN 0-444-01515-9, pp. 67–78

    Google Scholar 

  • Zeman G (2008) Ultraviolet Radiation. Health Physics Society, http://hps.org/hpspublications/ articles/uv.html

    Google Scholar 

  • Zenoff VF, Siñeriz F, and Farías ME (2006) Diverse responses to UV-B radiation and repair mechanisms of bacteria isolated from high-altitude aquatic environments. Appl. Environ. Microbiol. 72(12): 7857–7863

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rafanelli, C. et al. (2010). UV Solar Radiation in Polar Regions: Consequences for the Environment and Human Health. In: Gao, W., Slusser, J.R., Schmoldt, D.L. (eds) UV Radiation in Global Climate Change. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03313-1_4

Download citation

Publish with us

Policies and ethics