Skip to main content

Oxygen Therapy

  • Reference work entry
Textbook of Clinical Pediatrics
  • 393 Accesses

Introduction

Aerobic Metabolism

Highly energized electrons liberated in the mitochondrial tri-carboxylic cycle are transported to the electron transport chain, and finally captured by oxygen. In this process known as oxidative phosphorylation, ADP is transformed into ATP and ground molecular di-oxygen is reduced by four electrons, and combining with protons intruded through the ATP synthase pump forms water. Remarkably, aerobic metabolism (i.e., with the concourse of oxygen) is 20 times more efficient than anaerobic metabolism thus providing sufficient energy for cell growth, development, and reproduction (e.g., 1 molecule of glucose forms 34 molecules of ATP through the aerobic pathway and 4 through the anaerobic). Of note is that specific cells such as neurons are unable to accumulate energy and are only able to survive for few minutes under hypoxic conditions rendering oxygen indispensable for central nervous system survival.

Each oxygen molecule has two unpaired electrons in its...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM (2003) Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med 349:959–967

    Article  PubMed  CAS  Google Scholar 

  • Chen ML, Guo L, Smith LE, Dammann CE, Dammann O (2010) High or low oxygen saturation and severe retinopathy of prematurity: a meta-analysis. Pediatrics 125:e1483–e1492

    Article  PubMed  Google Scholar 

  • Dawson JA, Morley CJ (2010) Monitoring oxygen saturation and heart rate in the early neonatal period. Semin Fetal Neonatal Med 15:203–207

    Article  PubMed  CAS  Google Scholar 

  • Dawson JA, Kamlin COF, Vento M et al (2010) Defining the reference range for oxygen saturation for infants after birth. Pediatrics 125:e1340–e1347

    Article  PubMed  Google Scholar 

  • Escrig R, Arruza L, Izquierdo I et al (2008) Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics 121:875–881

    Article  PubMed  Google Scholar 

  • Farrow KN, Groh BS, Schumacker PT, Lakshminrusimha S, Czech L, Gugino SF, Russell JA, Steinhorn RH (2008) Hyperoxia increases phosphodiesterase 5 expression and activity in ovine fetal pulmonary artery smooth muscle cells. Circ Res 102(2):226–233

    Article  PubMed  CAS  Google Scholar 

  • Finer N, Leone T (2009) Oxygen saturation monitoring for the preterm infant: the evidence basis for current practice. Pediatr Res 65:375–380

    Article  PubMed  Google Scholar 

  • Lakshminrusimha S, Swartz DD, Gugino SF, Ma CX, Wynn KA, Ryan RM, Russell JA, Steinhorn RH (2009) Oxygen concentration and pulmonary hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res 66:539–544

    Article  PubMed  Google Scholar 

  • Maltepe E, Saugstad OD (2009) Oxygen in health and disease. Pediatr Res 65:261–268

    Article  PubMed  CAS  Google Scholar 

  • Perlman JM, Wyllie J, Kattwinkel J et al (2010) Part 11: Neonatal resuscitation: 2010 International consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 122:S516–S538

    Article  PubMed  Google Scholar 

  • Rabi Y (2010) Oxygen in the delivery room. Neoreviews 11:e130–e138

    Article  Google Scholar 

  • Saugstad OD (2005) Oxidative stress in the newborn – a 30-year perspective. Biol Neonate 88:228–236

    Article  PubMed  CAS  Google Scholar 

  • Saugstad OD (2007) Optimal oxygenation at birth and in the neonatal period. Neonatology 91:319–322

    Article  PubMed  CAS  Google Scholar 

  • Saugstad OD (2010) Resuscitation of newborn infants: from oxygen to air. Lancet 376:1970–1971

    Article  PubMed  Google Scholar 

  • Saugstad OD, Aune D (2011) In search of the optimal saturation for extremely low birth weight infants: a systematic review and meta-analysis. Neonatology 100:1–8

    Article  PubMed  Google Scholar 

  • Saugstad OD, Ramji S, Soll RF, Vento M (2008) Resuscitation of newborn infants with 21% or 100% oxygen: An updated systematic meta-analysis. Neonatology 94:176–182

    Article  PubMed  CAS  Google Scholar 

  • Sola A (2006) Avoiding hyperoxia in infants < or = 1, 250 g is associated with improved short- and long-term outcomes. J Perinatol 26:700–705

    Article  PubMed  Google Scholar 

  • SUPPORT Study Group of the Eunice Kennedy Shriver NICHD Neonatal Research Network, Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR et al (2010) Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362:1959–1969

    Article  PubMed  CAS  Google Scholar 

  • Tin W, Milligan DW, Pennefather P, Hey E (2001) Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed 84:F106–F110

    Article  PubMed  CAS  Google Scholar 

  • Vento M (2010) Titrating oxygen needs in the very preterm in the delivery room. J Neonatal Perinat Med 3:161–169

    Google Scholar 

  • Vento M, Sastre J, Asensi MA, Viña J (2005) Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med 172:1393–1398

    Article  PubMed  Google Scholar 

  • Vento M, Aguar M, Leone TA et al (2009a) Using intensive care technology in the delivery room: a new concept for the resuscitation of extremely preterm neonates. Pediatrics 122:1113–1116

    Article  Google Scholar 

  • Vento M, Moro M, Escrig R et al (2009b) Preterm resuscitation with low oxygen causes less oxidative stress, inflammation and chronic lung disease. Pediatrics 124:439–449

    Article  Google Scholar 

  • Vento M, Cheung PY, Aguar M (2009c) The first golden minutes of the extremely low gestational age neonate: a gentle approach. Neonatology 95:286–298

    Article  PubMed  Google Scholar 

  • Vento M, Aguar M, Escobar J et al (2009d) Antenatal steroids and antioxidant enzyme activity in preterm infants: influence of gender and timing. Antioxid Redox Signal 11:2945–2955

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Anderson C, Leone TA, Rich W, Govindaswami B, Finer NN (2008) Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics 121:1083–1089

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximo Vento M.D., Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Vento, M. (2012). Oxygen Therapy. In: Elzouki, A.Y., Harfi, H.A., Nazer, H.M., Stapleton, F.B., Oh, W., Whitley, R.J. (eds) Textbook of Clinical Pediatrics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02202-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02202-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02201-2

  • Online ISBN: 978-3-642-02202-9

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics