Skip to main content

Noise Induced Dynamics in Adaptive Networks with Applications to Epidemiology

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Recent work in modeling the coupling between disease dynamics and dynamic social network geometry has led to the examination of how human interactions force a rewiring of connections in a population. Rewiring of the network may be considered an adaptive response to social forces due to disease spread, which in turn feeds back to the disease dynamics. Such epidemic models, called adaptive networks, have led to new dynamical instabilities along with the creation of multiple attracting states. The co-existence of several attractors is sensitive to internal and external fluctuations, which lead to enhanced stochastic oscillatory outbreaks and disease extinction. The aim of this chapter is to explore the bifurcations of adaptive network models in the presence of fluctuations and to review some of the new fluctuation phenomena induced in adaptive networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Anderson and R. M. May. Infectious Diseases of Humans. Oxford University Press, Oxford, 1991.

    Google Scholar 

  2. L. Arnold. Random Dynamical Systems. Springer, New York, 2001.

    Google Scholar 

  3. A. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

    Article  MathSciNet  Google Scholar 

  4. I. J. Benczik, S. Z. Benczik, B. Schmittmann, and R. K. P. Zia. Lack of consensus in social systems. http://arxiv.org/abs/0709.4042, 2007.

  5. S. Bornholdt and T. Röhl. Self-organized critical neural networks. Physical Review E, 67(6):066118, 2003.

    Article  Google Scholar 

  6. S. Bornholdt and K. Sneppen. Neutral mutations and punctuated equilibrium in evolving genetic networks. Physical Review Letters, 81(1):236–239, 1998.

    Article  Google Scholar 

  7. K. Christensen, R. Donangelo, B. Koiller, and K. Sneppen. Evolution of random networks. Physical Review Letters, 81(11):2380, 1998.

    Article  Google Scholar 

  8. L. D. Costa, F. A. Rodrigues, G. Travieso, and P. R. V. Boas. Characterization of complex networks: A survey of measurements. Advances in Physics, 56:167–242, 2007.

    Article  Google Scholar 

  9. E. J. Doedel, R. Paffenroth, A. Champnets, T. Fairgrieve, Y. A. Kuznetsov, B. Sandstede, and X. Wang. AUTO: Software for continuation and bifurcation for ordinary differential equations, 2001.

    Google Scholar 

  10. M. I. Dykman and M. A. Krivoglaz. Fluctuations in non-linear systems near bifurcations corresponding to the appearance of new stable states. Physica A, 104(3):480–494, 1980.

    Article  MathSciNet  Google Scholar 

  11. H. Ebel and S. Bornholdt. Coevolutionary games on networks. Physical Review E, 66(5):056118, 2002.

    Article  Google Scholar 

  12. G. C. M. A. Ehrhardt, M. Marsili, and F. V. Redondo. Phenomenological models of socioeconomic network dynamics. Physical Review E, 74(3):036106, 2006.

    Google Scholar 

  13. Z. Fan and G. Chen. Evolving networks driven by node dynamics. International. Journal of Modern Physics B, 18:2540–2546, 2004.

    Article  MathSciNet  Google Scholar 

  14. S. Gil and D. H. Zanette. Coevolution of agents and networks: Opinion spreading and community disconnection. Physics Letters A, 356(2):89–94, 2006.

    Article  MATH  Google Scholar 

  15. P. M. Gleiser and D. H. Zanette. Synchronization and structure in an adaptive oscillator network. European Physics Journal B, 53:233–238, 2006.

    Article  Google Scholar 

  16. P. Gong and C. van Leeuwen. Evolution to a small-world network with chaotic units. Europhysical Letters, 67:328–333, 2004.

    Article  Google Scholar 

  17. R. Graham and T. Tél. Nonequilibrium potentials for local codimension-2 bifurcations of dissipative flows. Physical Review A, 35(3):1328–1349, 1987.

    Article  MathSciNet  Google Scholar 

  18. T. Gross and B. Blasius. Adaptive coevolutionary networks: a review. Journal of the Royal Society Interface, 2007. DOI: 10.1098/rsif.2007.1229.

    Google Scholar 

  19. T. Gross, C. J. D. D’Lima, and B. Blasius. Epidemic dynamics on an adaptive network. Physical Review Letters, 96:208701, 2006.

    Article  Google Scholar 

  20. P. Holme and G. Ghoshal. Dynamics of networking agents competing for high centrality and low degree. Physical Review Letters, 96(9):098701, 2006.

    Article  Google Scholar 

  21. P. Holme and M. E. J. Newman. Nonequilibrium phase transition in the coevolution of networks and opinions. Physical Review E, 74(5):056108, 2006.

    Article  Google Scholar 

  22. W. Horsthemke and R. Lefever. Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology. Springer Series in Synergetics , Vol. 15, 1983.

    Google Scholar 

  23. J. Ito and K. Kaneko. Spontaneous structure formation in a network of chaotic units with variable connection strengths. Physical Review Letters, 88(2):028701, 2002.

    Article  Google Scholar 

  24. J. Ito and K. Kaneko. Spontaneous structure formation in a network of dynamic elements. Physical Review E, 67(4):046226, 2003.

    Article  Google Scholar 

  25. S. Jain and S. Krishna. A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proceedings of the National Academy of Science, 98:543–547, 2001.

    Article  Google Scholar 

  26. M. E. J. Newman. The structure and function of complex networks. SIAM Review, 45(2):167–256, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. M. Pacheco, A. Traulsen, and M. A. Nowak. Coevolution of strategy and structure in complex networks with dynamical linking. Physical Review Letters, 97:258103, 2006.

    Article  Google Scholar 

  28. J. C. Scholz and M. O. W. Greiner. Topology control with ipd network creation games. New Journal of Physics, 8:185–199, 2007.

    Article  Google Scholar 

  29. L. B. Shaw and I. B. Schwartz. Fluctuating epidemics on adaptive networks. Physical Review E, 77:066101, 2008.

    Article  MathSciNet  Google Scholar 

  30. B. Skyrms and R. Pemantle. A dynamic model of social network formation. Proceedings of the National Academy of Sciences, 97:9340–9346, 2000.

    Article  MATH  Google Scholar 

  31. F. Vazquez, V. M. Eguíluz, and M. San Miguel. Generic absorbing transition in coevolution dynamics. Physical Review Letters, 100(10):108702, 2008.

    Article  Google Scholar 

  32. D. H. Zanette and S. Gil. Opinion spreading and agent segregation on evolving networks. Physica D, 224:156–165, 2006.

    Google Scholar 

  33. D. H. Zanette and S. R. Gusman. Infection spreading in a population with evolving contacts. http://arxiv.org/abs/0711.0874, 2007.

  34. C. Zhou and J. Kurths. Dynamical weights and enhanced synchronization in adaptive complex networks. Physical Review Letters, 96(16):164102, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah B. Shaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shaw, L.B., Schwartz, I.B. (2009). Noise Induced Dynamics in Adaptive Networks with Applications to Epidemiology. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics