Skip to main content

Heavy Metal Phytoremediation: Microbial Indicators of Soil Health for the Assessment of Remediation Efficiency

  • Chapter
  • First Online:
Advances in Applied Bioremediation

Part of the book series: Soil Biology ((SOILBIOL,volume 17))

Abstract

Phytoremediation is an effective, non-intrusive, inexpensive, aesthetically pleasing, socially accepted, promising phytotechnology for the remediation of polluted soils. The objective of any soil remediation process must be not only to remove the contaminant(s) from the soil but, most importantly, to restore the continued capacity of the soil to perform or function according to its potential (i.e., to recover soil health). Hence, indicators of soil health are needed to properly assess the efficiency of a phytoremediation process. Biological indicators of soil health, especially those related to the size, activity and diversity of the soil microbial communities, are becoming increasingly used, due to their sensitivity and capacity to provide information that integrates many environmental factors. In particular, microbial indicators of soil health are valid tools to evaluate the success of metal phytoremediation procedures such as phytoextraction and phytostabilization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soils. Biores Technol 79:273–276

    Article  CAS  Google Scholar 

  • Alkorta I, Amezaga I, Albizu I, Aizpurua A, Onaindia M, Buchner V, Garbisu C (2003a) Molecular microbial biodiversity assessment: a biological indicator of soil health. Rev Environ Health 18:131–151

    CAS  Google Scholar 

  • Alkorta I, Aizpurua A, Riga P, Albizu I, Amezaga I, Garbisu C (2003b) Soil enzyme activities as biological indicators of soil health. Rev Environ Health 18:65–73

    Google Scholar 

  • Alkorta I, Albizu I, Amezaga I, Onaindia M, Buchner V, Garbisu C (2004a) Climbing a ladder: a step-by-step approach to understanding the concept of agroecosystem health. Rev Environ Health 19:141–159

    CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004b) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Sci Bio/Technol 3:71–90

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Garbisu C (2004c) Plants against the global epidemic of arsenic poisoning. Environ Int 30:949–951

    Article  CAS  Google Scholar 

  • Alkorta I, Hernández-Allica J, Becerril JM, Amezaga I, Albizu I, Onaindia M, Garbisu C (2004d) Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev Environ Sci Bio/Technol 3:55–70

    Article  CAS  Google Scholar 

  • Alkorta I, Epelde L, Mijangos I, Amezaga I, Garbisu C (2006) Bioluminiscent bacterial biosensors for the assessment of metal toxicity and bioavailability in soils. Rev Environ Health 21:121–134

    Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy-metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publisher, Boca Raton, pp 85–107

    Google Scholar 

  • Bezdicek DF, Papendick RI, Lal R (1996) Introduction: importance of soil quality to health and sustainable land management. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA Special Publication 49, Soil Science Society of America, Madison WI, pp 1–8

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Coleman DC, Hendrix PF, Odum EP (1998) Ecosystem health: an overview. In: Huang PM, Adriano DC, Logan TJ, Checkai RT (eds) Soil chemistry and ecosystem health. Soil Science Society of America, Madison WI, pp 1–20

    Google Scholar 

  • Collins YE, Stotzky G (1989) Factors affecting the toxicity of heavy metals to microbes. In: Beveridge TJ, Doyle RJ (eds) Metal ions and bacteria. Wiley, Toronto, pp 31–91

    Google Scholar 

  • Costanza R, Norton BG, Haskell BD (1992) Ecosystem health. New goals for environmental management. Island Press, Washington DC

    Google Scholar 

  • Costanza R, Mageau M, Norton B, Patten BC (1998) What´s sustainability? In: Rapport D, Costanza R, Epstein PR, Gaudet C, Levins R (eds) Ecosystem health. Blackwell Science, Oxford, pp 231–239

    Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. Vitro Cell Dev Biol 29:207–212

    Google Scholar 

  • Dasappa SM, Loehr RC (1991) Toxicity reduction in contaminated soil remediation processes. Water Res 25:1121–1130

    Article  CAS  Google Scholar 

  • Delorme TA, Gagliardi JV, Angle JS, Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol 47:773–776

    Article  CAS  Google Scholar 

  • Doran JW, Parkin TB (1994) Defining and assessing soil quality. In: Doran JW, Coleman DC, Bezdiceck DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication 35, Soil Science Society of America, Madison WI, pp 3–21

    Google Scholar 

  • Doran JW, Parkin TB (1996) Quantitative indicators of soil quality: a minimum data set. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA Special Publication 49, Soil Science Society of America, Madison, WI, pp 25–37

    Google Scholar 

  • Doran JW, Safley M (1997) Defining and assessing soil health and sustainable productivity. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 1–28

    Google Scholar 

  • Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    CAS  Google Scholar 

  • EPA (2000) Introduction to phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Epelde L, Becerril JM, Hernández-Allica J, Barrutia O, Garbisu C (2008) Functional diversity as indicator of the recovery of soil health derived from Thlaspi caerulescens growth and metal phytoextraction. Appl Soil Ecol 39:299–310

    Article  Google Scholar 

  • Garbisu C, Alkorta I (1997) Bioremediation: principles and future. J Clean Technol Environ Toxicol Occup Med 6:351–366

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (1999) Utilization of genetically engineered microorganisms (GEMs) for bioremediation. J Chem Technol Biotechnol 74:599–606

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Biores Technol 77:229–236

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Proc Environ Protect 3:58–66

    Google Scholar 

  • Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I, Becerril JM (2002) Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health 17:173–188

    CAS  Google Scholar 

  • Gómez E, Ferreras L, Toresani S (2006) Soil bacterial functional diversity as influenced by organic amendment application. Biores Technol 97:1484–1489

    Article  CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1997) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Article  Google Scholar 

  • Grčman H, Vodnik D, Velikonja-Bolta S, Leštan D (2003) Ethylenediaminedisuccinate as a new chelate for environmentally safe enhanced lead phytoextraction. J Environ Qual 32:500–506

    Google Scholar 

  • Gremion F, Chatzinotas A, Kaufmann K, Von Sigler W, Harms H (2004) Impacts of heavy-metal contamination and phytoremediation on a microbial community during a 12-month microcosm experiment. FEMS Microbiol Ecol 48:273–283

    Article  CAS  Google Scholar 

  • Hernández-Allica J, Becerril JM, Zárate O, Garbisu C (2006a) Assessment of the efficiency of a metal phytoextraction process with biological indicators of soil health. Plant Soil 281:147–158

    Article  CAS  Google Scholar 

  • Hernández-Allica J, Garbisu C, Becerril JM, Barrutia O, García-Plazaola JI, Zhao FJ, McGrath SP (2006b) Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ 29:1422–1429

    Article  CAS  Google Scholar 

  • Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  CAS  Google Scholar 

  • Hernández-Allica J, Garbisu C, Barrutia O, Becerril JM (2007) EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environ Exp Bot 60:26–32

    Article  CAS  Google Scholar 

  • Hildén M, Rapport DJ (1993) Four centuries of cumulative impacts on a Finnish river and its estuary: an ecosystem health-approach. J Aquat Ecosyst Health 2:261–275

    Article  Google Scholar 

  • Huang PM, Adriano DC, Logan TJ, Checkai RT (1998) Preface. In: Huang PM, Adriano DC, Logan TJ, Checkai RT (eds) Soil chemistry and ecosystem health. Soil Science Society of America, Madison WI, p viii

    Google Scholar 

  • Janke RR, Papendick RI (1994) Preface. In: Doran JW, Coleman DC, Bezdiceck DF, Stewart BA (eds) Defining soil quality for a sustainable environment. SSSA Special Publication 35, Soil Science Society of America, Madison WI, pp ix–xi

    Google Scholar 

  • Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38:3597–3625

    Article  CAS  Google Scholar 

  • Jones PW, Williams DR (2001) Chemical speciation used to assess [S,S’]-ethylenediaminedisuccinic acid (EDDS) as a readily-biodegradable replacement for EDTA in radiochemical decontamination formulations. Appl Radiat Isot 54:587–593

    Article  CAS  Google Scholar 

  • Kandeler E (2007) Physiological and biochemical methods for studying soil biota and their function. In: Eldor AP (ed) Soil microbiology, ecology and biochemistry. Academic, Oxford, pp 53–80

    Google Scholar 

  • Keller C, Hammer D (2004) Metal availability and soil toxicity after repeated croppings of Thlaspi caerulescens in metal contaminated soils. Environ Pollut 131:243–254

    Article  CAS  Google Scholar 

  • Kirkham MB (1977) Organic matter and heavy metal uptake. Compost Sci 18:18–21

    CAS  Google Scholar 

  • Knox AS, Seaman J, Adriano DC, Pierzynski G (2000) Chemophytostabilization of metals in contaminated soils. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Bioremediation of contaminated soils. Marcel Dekker, New York, pp 811–836

    Google Scholar 

  • Larson JL, Zak DR, Sinsabaugh RL (2002) Extracellular enzyme activity beneath temperate trees growing under elevated carbon dioxide and ozone. Soil Sci Soc Am J 66:1848–1856

    Article  CAS  Google Scholar 

  • Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  • Luo Y, Zhou X (2006) Preface. In: Luo Y, Zhou X (eds) Soil respiration and the environment. Academic, Oxford, pp ix–x

    Chapter  Google Scholar 

  • Mageau MT, Constanza R, Ulanowicz RE (1995) The development and initial testing of a quantitative assessment of ecosystem health. Ecosyst Health 1:201–213

    Google Scholar 

  • Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  Google Scholar 

  • McGrath SP (1987) Long-term studies of metal transfers following applications of sewage sludge. In: Coughtrey PJ, Martin MH, Unsworth MH (eds) Pollutant transport and fate in ecosystems. Special Publication No. 6 of the British Ecological Society, Blackwell Scientific, Oxford, pp 301–317

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agron 75:1–56

    Article  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Mijangos I, Pérez R, Albizu I, Garbisu C (2006) Effects of fertilization and tillage on soil biological parameters. Enzyme Microb Technol 40:100–106

    Article  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Odum EP (1981) The effects of stress on the trajectory of ecological succession. In: Barrett GW, Rosenberg R (eds) Stress effects on natural ecosystems.Wiley, Chichester, pp 43–47

    Google Scholar 

  • Pankhurst CE, Doube BM, Gupta VVSR (1997) Biological indicators of soil health: synthesis. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 419–435

    Google Scholar 

  • Pearce F (2003) Arsenic´s fatal legacy grows. New Sci 179:4–5

    Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Preston-Mafham J, Boddy L, Randerson PF (2002) Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles – a critique. FEMS Microbiol Ecol 42:1–14

    CAS  Google Scholar 

  • Rapport D (1998) Defining ecosystem health. In: Rapport D, Costanza R, Epstein PR, Gaudet C, Levins R (eds) Ecosystem health. Blackwell Science, Oxford, pp 18–33

    Google Scholar 

  • Rapport DJ, McCUllum J, Miller MH (1997) Soil health: its relation to ecosystem health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, pp 29–47

    Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5: 285–290

    Article  CAS  Google Scholar 

  • Raskin I, Smith RD, Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr Opin Biotechnol 8:221–226

    Article  CAS  Google Scholar 

  • Reichle DE (1997) The role of soil invertebrates in nutrient cycling. In: Lohm V, Persson T (eds) Soil organisms as components of ecosystems. Swedish Natural Science Research Council, Stockholm, pp 145–156

    Google Scholar 

  • Robinson B, Fernández JE, Madejón P, Marañón T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  • Römkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate-induced phytoremediation of soils. Environ Poll 116:109–121

    Article  Google Scholar 

  • Rozas MA, Alkorta I, Garbisu C (2006) Phytoextraction and phytofiltration of arsenic. Rev Environ Health 21:43–56

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol 49:643–668

    Article  CAS  Google Scholar 

  • Santos FS, Hernández-Allica J, Becerril JM, Amaral-Sobrinho N, Mazur N, Garbisu C (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    Article  CAS  Google Scholar 

  • Stevenson FJ, Ardakani MS (1972) Organic matter reactions involving micronutrients in soils. In: Mortvedt JJ, Giordano PM, Lindsay WL (eds) Micronutrients in agriculture. SSSA, Madison WI, pp 79–114

    Google Scholar 

  • Tate RL (1995) Soil microbiology. Wiley, New York

    Google Scholar 

  • Torsvik V, Øvreås L (2007) Microbial phylogeny and diversity in soil. In: Van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology, 2nd ed. CRC Press, Boca Raton, pp 23–54

    Google Scholar 

  • Toyota K, Kuninaga S (2006) Comparison of soil microbial community between soils amended with or without farmyard manure. Appl Soil Ecol 33:39–48

    Article  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, McIntosh M (2006) Changes in soil biological activities under reduced soil pH during Thlaspi caerulescens phytoextraction. Soil Biol Biochem 38:1451–1461

    Article  CAS  Google Scholar 

  • Welp G, Brümmer GW (1997) Microbial toxicity of Cd and Hg in different soils related to total and water-soluble contents. Ecotoxicol Environ Saf 38:200–204

    Article  CAS  Google Scholar 

  • Wenzel WW, Salt D, Smith R, Adriano DC (1999) Phytoremediation: a plant–microbe-based remediation system. In: Adriano DC, Bollag JM, Frankenberger W, Sims R (eds) Bioremediation of contaminated soils. SSSA Special Monograph 37, Madison WI, pp 457–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garbisu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Epelde, L., Ma Becerril, J., Alkorta, I., Garbisu, C. (2009). Heavy Metal Phytoremediation: Microbial Indicators of Soil Health for the Assessment of Remediation Efficiency. In: Singh, A., Kuhad, R., Ward, O. (eds) Advances in Applied Bioremediation. Soil Biology, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89621-0_16

Download citation

Publish with us

Policies and ethics