Skip to main content

The Generation and Preservation of Mineral Deposits in Arc–Continent Collision Environments

  • Chapter
  • First Online:
Arc-Continent Collision

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Intra-oceanic volcanic arcs are sites for major magmatic hydrothermal mineral deposits such as porphyry Cu–Mo–Au, epithermal Au–Ag and volcanic hosted massive sulfide (VMS) deposits. Arc magmas are largely generated from the mantle wedge as it reacts with components rising from the subducted slab. Variations in the tectonic framework of the arc, the nature of subduction and the components interacting with the mantle wedge will obviously have a direct effect on mineral deposit formation processes and the type of deposit resulting. Most mineral deposits found in fossil arc–continent collision zones are those that were formed in intra-oceanic subduction settings and which have been preserved as a result of the arc–continent collision event. Others appear to form either during the collision event or following it as the subduction zone changes polarity or jumps to a new position. At the loci of arc–continent collision, the first effects that may be seen are due to the ingress of continental material to the subduction channel. This may change the budget of contributed components from the slab to the mantle wedge and in some cases it appears that magmas enriched in metals such as gold could be generated. There is also some evidence that the physical effect of the ingress of the less dense continental crust itself could cause subduction shallowing or even stalling. Shallowing or stalling can lead to the generation of K-rich magmas which have been linked to the generation of magmatic Cu and Au deposits. During the collision, obduction of ophiolites from the overlying oceanic plate is a common feature and this may be accompanied by accretion of parts of, or even the entire volcanic arc. This will result in the preservation of mineral deposits such as ophiolitic Cr and VMS deposits that had already formed in the intra-ocean environment accreted to the continental margin. Arc reversal is a feature in some arc–continent collisions, and this effectively turns passive continental margins into sub continental subduction margins with an active continental arc. Continental arcs are important sites for porphyry Cu–Mo–Au and epithermal Au–Ag deposits and the arc reversal may result in melts being sourced from more fertile, previously metasomatised mantle resulting in larger and higher grade Cu and Au deposits. The actual collision itself is shown to result in the formation of orogenic gold deposits in some cases and finally post-collision extension can lead to the formation of VMS deposits in favourable settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afonso JC, Zlotnik S (2011) The subductability of continental lithosphere: the before and after story. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Allen RL, Weihed P, Blundell DJ, Crawford T, Davidson G, Galley A, Gibson H, Hannington M, Herrington R, Herzig P, Large R, Lentz D, Maslennikov V, McCutcheon S, Peter J, Tornos F (2002) Global comparisons of volcanic-associated massive sulphide districts. In: Blundell D et al (eds) The timing and location of major ore deposits in an evolving orogen, vol 204. Geological Society of London, Special Publication, London, pp 13–37

    Google Scholar 

  • Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208

    Article  Google Scholar 

  • Audley-Charles MG (2004) Ocean trench blocked and obliterated by Banda fore-arc collision with Australian proximal continental slope. Tectonophysics 389:65–79

    Article  Google Scholar 

  • Auzanneau E, Vielzeuf D, Schmidt MW (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineralog Petrol 152:125–148

    Article  Google Scholar 

  • Barley ME, Rak P, Wyman D (2002) Tectonic controls on magmatic-hydrothermal gold mineralization in the magmatic arcs of SE Asia. Geol Soc Spec Publ 204:39–47

    Article  Google Scholar 

  • Brown D, Spadea P, Puchkov V, Alvarez-Marron J, Herrington R, Willner A, Heztel R, Gorozhanina Y (2006) Arc continent collision in the Southern Urals. Earth Sci Rev 79:261–287

    Article  Google Scholar 

  • Brown D, Juhlin C, Ayala C, Tryggvason A, Bea F, Alvarez-Marron J, Carbonell R, Seward D, Glasmacher U, Puchkov V, Perez-Estaun A (2008) Mountain building processes during continent-continent collision in the Uralides. Earth Sci Rev 89:177–195

    Google Scholar 

  • Brown D, Herrington R, Alvarev-Marron J (2011) Processes of arc-continent collision in the Uralides. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Chapter  Google Scholar 

  • Brueckner HK (2009) Subduction of continental crust, the origin of post-orogenic granitoids (and anorthosites?) and the evolution of Fennoscandia. J Geol Soc 166:753–762

    Article  Google Scholar 

  • Carlile JC, Mitchell AHG (1994) Magmatic arcs and associated gold and copper mineralization in Indonesia. J Geochem Explor 50:91–142

    Article  Google Scholar 

  • Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–99°W) Mexico. Contrib Mineralog Petrol 143:641–663

    Article  Google Scholar 

  • Casey JF, Dewey JF (1984) Initiation of subduction zones along transform and accreting plate boundaries, triple-junctions evolution and fore-arc spreading centres – implications for ophiolite geology and obduction. Geol Soc Lond Spec Publ 13:269–290

    Article  Google Scholar 

  • Cawood PA, Suhr G (1992) Generation and obduction of ophiolites; constraints for the Bay of Islands Complex, western Newfoundland. Tectonics 11:884–897

    Article  Google Scholar 

  • Chemenda AI, Mattauer M, Bokun AN (1996) Continental subduction and a mechanism for exhumation of high-pressure metamorphic rocks: new modelling and field data from Oman. Earth Planet Sci Lett 143:173–182

    Article  Google Scholar 

  • Chew DM, Flowerdew MJ, Page LM, Crowley QC, Daly JS, Cooper M, Whitehouse MJ (2008) The tectonothermal evolution and provenance of the Tyrone Central Inlier Ireland Grampian imbrication of an outboard Laurentian microcontinent? J Geol Soc Lond 165:675–685

    Article  Google Scholar 

  • Clift PD, Schouten H, Draut AE (2003) A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides. Geol Soc Lond Spec Publ 219:81–98

    Article  Google Scholar 

  • Cloos M, Sapiie B, van Ufford AQ, Weiland RJ, Warren PQ, McMahon TP (2005) Collisional delamination in New Guinea: the geotectonics of subducting slab breakoff. GSA Spec Pap 400:1–51

    Google Scholar 

  • Crawford AJ, Berry RF (1992) Tectonic implications of Late Proterozoic-early Paleozoic igneous rock associations in western Tasmania. Tectonophysics 214:37–56

    Article  Google Scholar 

  • Crawford AJ, Meffre S, Symonds PA (2003) 120 to 0 Ma tectonic evolution of the southwest Pacific and analogous geological evolution of the 600 to 220 Ma Tasman Fold Belt System. In: Hillis R.R., Muller R.D. (eds) Evolution and dynamics of the Australian plate. Geological Society of Australia Special Publication, Australia, pp 377–397

    Google Scholar 

  • Davidson JP (1996) Deciphering the mantle and crustal signatures in subduction zone magmatism. Geophys Monogr 96:251–262

    Article  Google Scholar 

  • Davies JH, von Blanckenburg F (1995) Slab breakoff; a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet Sci Lett 129:85–102

    Article  Google Scholar 

  • de Hoog JCM, Mason PRD, van Bergen MJ (2001) Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia. Geochim Cosmochim Acta 65:3147–3164

    Article  Google Scholar 

  • Dewey JF (2005) Orogeny can be very short. Proc Natl Acad Sci USA 102:15286–15293

    Article  Google Scholar 

  • Dewey JF, Mange M (1999) Petrography of Ordovician and Silurian sediments in the western Irish Caledonides: tracers of a short-lived Ordovician continent-arc collision orogeny and the evolution of the Laurentian Appalachian-Caledonian margin. Geol Soc Lond Spec Publ 164:55–107

    Article  Google Scholar 

  • Dewey JF, Ryan PD (1990) The Ordovician evolution of the South Mayo Trough, western Ireland. Tectonics 9:887–901

    Article  Google Scholar 

  • Dimkin AM, Necheukin VM, Sazonov VN (1990) Geology and geochemistry of the principal ore systems of the Urals. Nauka, Moscow, p 270 (in Russian)

    Google Scholar 

  • Draut AE, Clift PD, Hannigan RE, Layne G, Shimizu N (2002) A model for continental crust genesis by arc accretion: rare earth element evidence from the Irish Caledonides. Earth Planet Sci Lett 203:861–877

    Article  Google Scholar 

  • Duke JM (1996) Podiform (ophiolitic) chromite. In: Eckstrand OR et al (eds) Geology of Canadian mineral deposit types, No 8. Geological Survey of Canada, Canada, pp 621–624

    Google Scholar 

  • Earls G, Hutton D, Wilkinson JJ, Moles N, Parnell J, Fallick AE, Boyce AJ (1996) The gold metallogeny of northwest Northern Ireland: Northern Ireland geological Survey Report 049.96

    Google Scholar 

  • Elburg MA, Van Leeuwen T, Foden J, Muhardjo (2002) Origin of geochemical variability by arc-continent collision in the Biru area, southern Sulawesi (Indonesia). J Petrol 43:581–606

    Article  Google Scholar 

  • Foley SF, Wheller GE (1990) Parallels in the origin of the geochemical signatures of island arc volcanics and continental potassic igneous rocks: the role of residual titanites. Chem Geol 85:1–18

    Article  Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW et al (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 523–560

    Google Scholar 

  • Fyfe WS (1992) Magma underplating of continental crust. J Volcanol Geoth Res 50:33–40

    Article  Google Scholar 

  • Garson MS, Mitchell AHG (1977) Mineralization at destructive plate boundaries: a brief review, vol 7. Geological Society, Special Publications, London, pp 81–97

    Google Scholar 

  • Garwin S, Hall R, Watanabe Y (2005) Tectonic settings, geology and gold and copper mineralization in Cenozoic magmatic arcs of southeast Asia and the west Pacific. In: Hedenquist JW et al (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 891–930

    Google Scholar 

  • Gasparon M, Varne R (1998) Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineral Petrol 64:89–117

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, NY, p 390

    Book  Google Scholar 

  • Groves DI, Bierlein FP (2007) Geodynamic settings of mineral deposit systems. J Geol Soc Lond 164:19–30

    Article  Google Scholar 

  • Gusev GS, Gushchin AV, Zaykov VV, Maslennikov VV, Mezhelovsky NV, Perevozchikov BV, Surin TN, Filatov EI, Shirai EP (2000) Geology and metallogeny of island arcs. In: Mezhelovsky NV et al (eds) Geodynamics and metallogeny: theory and implications for applied geology. Ministry of Natural Resources of the RF and GEOKART, Moscow, pp 213–295

    Google Scholar 

  • Gutscher M-A, Maury R, Eissen J-P, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538

    Article  Google Scholar 

  • Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer based reconstructions, model and animations. J Asian Earth Sci 20:353–431

    Article  Google Scholar 

  • Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, republic of Ireland. Miner Deposita 30:303–313

    Article  Google Scholar 

  • Hamilton WB (1995) Subduction systems and magmatism. Geol Soc Lond Spec Publ 81:3–28

    Article  Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist JW et al (eds) Economic geology, one hundredth anniversary volume, 1905–2005. Society of Economic Geologists, Littleton, CO, pp 111–141. ISBN 978-1-887483-01-8

    Google Scholar 

  • Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an intrusion-centred hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu-Au deposits. Econ Geol 93:373–404

    Article  Google Scholar 

  • Herrington RJ, Scotney PM, Roberts S, Boyce AJ, Harrison D (2011) Temporal association of arc-continent collision, progressive magma contamination in arc volcanism and formation of gold-rich massive sulphide deposits on Wetar Island (Banda Arc), Gondwana Research 19:583–593

    Google Scholar 

  • Herrington RJ, Armstrong RN, Zaykov VV, Maslennikov VV, Tessalina SG, Orgeval J-J, Taylor RN (2002) Massive sulfide deposits in the South Urals: geological setting within the framework of the Uralide orogen. In: Brown D, Juhlin C, Puchkov V (eds) Mountain building in the Uralides: Pangea to present, vol 132. American Geophysical Union, Geophysical Monograph, pp 155–182

    Google Scholar 

  • Herrington R, Maslennikov V, Zaykov V, Seravkin I, Kosarev I, Buschmann B, Orgeval J-J, Holland N, Tesalina S, Nimis P, Armstrong R (2005a) Classification of VMS deposits: lessons from the South Uralides. Ore Geol Rev 27:203–237

    Article  Google Scholar 

  • Herrington RJ, Zaykov VV, Maslennikov VV, Brown D, Puchkov VN (2005b) Mineral deposits of the Urals and links to geodynamic evolution. In: Hedenquist JW et al (eds) Economic geology, one hundredth anniversary volume, 1905–2005. Society of Economic Geologists, Littleton, CO, pp 1069–1095. ISBN 978-1-887483-01-8

    Google Scholar 

  • Herrington RJ, Puchkov VN, Yakubchuk AS (2005c) A reassessment of the tectonic zonation of the Uralides: implications for metallogeny. In: McDonald I, Boyce AJ, Butler IB, Herrington RJ, Polya DA (eds) Mineral deposits and earth evolution. Geological Society, Special Publications, London, pp 153–166

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Article  Google Scholar 

  • Hill KC, Hall R (2003) Mesozoic-Cenozoic evolution of Australia’s New Guinea margin in a west Pacific context. Geol Soc Am Spec Pap 372:265–290

    Google Scholar 

  • Hilton DR, Hoogewerff JA, van Bergen MJ, Hammerschmidt K (1992) Mapping magma sources in the east Sunda-Banda Arcs, Indonesia: constraints from helium isotopes. Geochim Cosmochim Acta 56:851–859

    Article  Google Scholar 

  • Hoffman PF (1988) United plates of America, the birth of a craton Early Proterozoic assembly and growth of Laurentia. Annu Rev Earth Planet Sci 16:543–603

    Article  Google Scholar 

  • Kennedy AK, Hart SR, Frey FA (1990) Composition and isotopic constraints on the Petrogenesis of alkaline arc lavas: Lihir Island, Papua New Guinea. J Geophys Res 95:6929–6942

    Article  Google Scholar 

  • Kisters AFM, Meyer FM, Seravkin IB, Znamensky SE, Kosarev AM, Ertl RGW (1999) The geological setting of lode-gold deposits in the central southern Urals: a review. Geol Rundsch 87:603–616

    Article  Google Scholar 

  • Konstantinovskaya EA (2001) Arc continent collision and subduction reversal in the Cenozoic evolution of the Northwest Pacific: an example from Kamchatka (NE Russia). Tectonophysics 333:75–94

    Article  Google Scholar 

  • Konstantinovskaya E (2011) Early Eocene arc-continent collision in Kamchatka, Russia: structural evolution and geodynamic model. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Koroteev VA, de Boorder H, Necheukhin VM, Sazonov VN (2007) Geodynamic setting of the mineral deposits of the Urals. Tectonophysics 276:291–300

    Google Scholar 

  • Lapukhov AS, Guzman B, Gorev VA, Solotchin EP, Travin AV (2007) The 40Ar/39Ar age of the epithermal gold-silver mineralization of the Asachinskoe Deposit, southern Kamchatka. J Volcanol Seismolog 1:405–409

    Article  Google Scholar 

  • Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of northern Oman. Geological Society of London, London, Memoir 11

    Google Scholar 

  • Margaritz M, Whitford DJ, James DE (1978) Oxygen isotopes and the origin of high- 87Sr/86Sr andesites. Earth Planet Sci Lett 40:220–230

    Article  Google Scholar 

  • McCaffrey R (1989) Active tectonics of the eastern Sunda and Banda arcs. J Geophys Res 93:15163–15182

    Article  Google Scholar 

  • McConnell B, Riggs N, Crowley QG (2009) Detrital zircon provenance and Ordovician terrane amalgamation, western Ireland. J Geol Soc 166:473–484

    Article  Google Scholar 

  • McInnes BIA, Cameron EM (1994) Carbonated, alkaline hybridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-Tanga-Feni arc, Papua New Guinea. Earth Planet Sci Lett 122:125–144

    Article  Google Scholar 

  • McInnes BIA, Gregoire M, Binns RA, Herzig PM, Hannington MD (2001) Hydrous metasomatism of oceanic sub-arc mantle, Lihir, Papua New Guinea: petrologt and geochemistry of fluid-metasomatised mantle wedge xenoliths. Earth Planet Sci Lett 188:169–183

    Article  Google Scholar 

  • McNulty BA, Farber DL, Wallace GS, Lopez R, Palacios O (1998) Role of plate kinematics and plate-slip-vector partitioning in continental magmatic arcs: evidence from the Cordillera Blanca, Peru. Geology 26:827–830

    Article  Google Scholar 

  • Melcher F, Grum W, Thalhammer TV, Thalhammer OAR (1999) The giant chromite deposits at Kempirsai, Urals: constraints from trace element (PGE, REE) and isotope data. Miner Deposita 34:250–272

    Article  Google Scholar 

  • Mitchell AHG (1985) Mineral deposits related to tectonic events accompanying arc-continent collision. Trans IMM 94:B115–B125

    Google Scholar 

  • Mitchell AHG, Garson MS (1981) Mineral deposits and global tectonic settings. Academic, London, p 404

    Google Scholar 

  • Montero P, Bea F, Gerdes A, Fershtater G, Zin’kova E, Borodina N, Osipova T, Smirnov V (2000) Single-zircon evaporation ages and Rb-Sr dating of four major Variscan batholiths of the Urals: a perspective on the timing of deformation and granite generation. Tectonophysics 317:93–108

    Article  Google Scholar 

  • Muller D, Groves DI (1993) Direct and indirect associations between potassic igneous rocks, shoshonites and copper-gold mineralization at a convergent plate margin. Ore Geol Rev 8:383–406

    Article  Google Scholar 

  • Muller D, Franz L, Herzig PM, Hunt S (2001) Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea. Lithos 57:163–186

    Article  Google Scholar 

  • Nimis P, Omenetto P, Tesalina SG, Zaykov VV, Tartarotti P, Orgeval J-J (2003) Peculiarities of some mafic–ultramafic-hosted massive sulfide deposits from southern Urals. A likely forearc occurrence. In: Eliopoulos et al (eds) Proceedings of the seventh biennial SGA meeting mineral exploration and sustainable development, vol 1. Millpress, Rotterdam, The Netherlands, pp 627–630

    Google Scholar 

  • Nimis P, Zaykov VV, Omenetoo P, Melekestseva IYu, Tesalina S, Orgeval J-J (2004) Peculiarities of some mafic-ultramafic and ultramafic hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals. Ore Geol Rev 33:49–69

    Article  Google Scholar 

  • Peacock SM (1993) Large-scale hydration of the lithosphere above subducting slabs. Chem Geol 108:49–59

    Article  Google Scholar 

  • Pearce JA (1983) Role of the subcontinental lithosphere in magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva, Cheshire, UK, pp 230–249

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Article  Google Scholar 

  • Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol 30:227–256

    Article  Google Scholar 

  • Plank T, Langmuir CH (1988) An evaluation of the global variations in the major element chemistry of arc basalts. Earth Planet Sci Lett 90:349–370

    Article  Google Scholar 

  • Prouteau G, Scaillet B, Pichavant M, Maury RC (1999) Fluid-present melting of oceanic crust in subduction zones. Geology 27:1111–1114

    Article  Google Scholar 

  • Ringwood AE (1977) Petrogenesis in island arc systems. In: Talwani M, Pitman WC (eds) Island arcs, deep sea trenches, and back arc basins. American Geophysical Union [Maurice Ewing Series I], Washington DC, pp 311–324

    Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell, Malden, MA

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Ryan PD, Dewey JF (1991) A geological and tectonic cross-section of the Caledonides of western Ireland. J Geol Soc Lond 148:173–180

    Article  Google Scholar 

  • Ryerson FJ, Watson EB (1987) Rutile saturation in magmas: implications for Ti-Nb-Ta depletion in island-arc basalts. Earth Planet Sci Lett 86:225–239

    Article  Google Scholar 

  • Savelieva GN, Nesbitt RW (1996) A synthesis of the stratigraphic and tectonic setting of the Uralian ophiolites. J Geol Soc Lond 153:525–537

    Article  Google Scholar 

  • Savelieva GN, Sharaskin AY, Saveliev AA, Spadea P, Gaggero L (1997) Ophiolites of the southern Uralides adjacent to the East European continental margin. Tectonophysics 276:117–138

    Article  Google Scholar 

  • Savelieva GN, Sharaskin AYa, Saveliev AA, Spadea P, Pertsev A.N, Barbarina II (2002) Ophiolites and zoned mafic-ultramafic massifs of the Urals: a comparative analysis and some tectonic implications. In: Brown D et al (eds) Mountain building in the Uralides: Pangea to the present. Geophysical monograph 132, pp 135–153. ISBN 0-87590-991-4

    Google Scholar 

  • Sawkins FJ (1984) Metal deposits in relation to plate tectonics. Springer, Berlin, p 261

    Book  Google Scholar 

  • Scotney PM, Roberts S, Herrington RJ, Boyce AJ, Burgess R (2005) The development of volcanic hosted massive sulfide and barite-gold orebodies on Wetar Island, Indonesia. Miner Deposita 40:76–99

    Article  Google Scholar 

  • Seedorf E, Dilles JD, Profett JM Jr, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features. In: Hedenquist JW et al (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 251–298

    Google Scholar 

  • Shatov VV, Seltmann R, Moon CJ (2003) The Yubileinoe porphyry Au(Cu) deposit, the south Urals: geology and alteration controls of mineralization. In: Eliopoulos DG et al (eds) Mineral exploration and sustainable development. Millpress, Rotterdam, The Netherlands, pp 379–382. ISBN 90 77017 77 1

    Google Scholar 

  • Shemenda AI (1993) Subduction of thee lithosphere and back arc dynamics: insights from physical modelling. J Geophys Res 98:16167–16185

    Article  Google Scholar 

  • Sidorov AA (2008) “Postmineral” basaltoids and ore-bearing hydrothermal meineralizations. J Volcanol Seismolog 2:143–148

    Article  Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Simmons SF, White NC, John DA (2005) Geological characteristics of epithermal precious and base metal deposits. In: Hedenquist JW et al (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, CO, pp 485–522

    Google Scholar 

  • Solomon M (1990) Subduction, arc reversal and the origin of porphyry copper-gold deposits in island arcs. Geology 18:630–633

    Article  Google Scholar 

  • Solomon M, Groves DI (1994) The geology and origin of Australia’s mineral deposits: oxford monographs in geology and geophysics, 24. Oxford University Press, Oxford, p 1002

    Google Scholar 

  • Spadea P, D’Antonio M (2006) Initiation and evolution of intra-oceanic subduction in the Uralides: geochemical and isotopic constraints from Devonian oceanic rocks of the Southern Urals, Russia. Island Arc 15:7–25

    Article  Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas. Earth Planet Sci Lett 121:293–325

    Article  Google Scholar 

  • Takahashi R, Matsueda H, Okrugin VM, Ono S (2006) Polymetallic and Au-Ag mineralizations at the Mutnovskoe Deposit in south Kamchatka, Russia. Resour Geol 56:141–156

    Article  Google Scholar 

  • Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and the origin of arc magmas: evidence from high-pressure experiments and natural rocks. J Volcanol Geoth Res 29:293–309

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Thalhammer TV (1996) The Kempirsai ophiolite complex, south Ural: petrology, geochemistry, platinum-group minerals, chromitite deposits. Unpubl. Ph.D thesis, Mining University, Leoben, p 197

    Google Scholar 

  • Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, Macpherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60:4785–4810

    Article  Google Scholar 

  • Turner S, Hawksworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U-230Th disequilibria magma petrogenesis, and flux rates beneath the depleted Tonga-Kermedec island arc. Geochim Cosmochim Acta 61:4855–4884

    Article  Google Scholar 

  • Vigneresse JL (1995) Crustal regime of deformation and ascent of granitic magma. Tectonophysics 249:187–202

    Article  Google Scholar 

  • Vroon PZ, Lowry D, van Bergen MJ, Boyce AJ, Mattey DP (2001) Oxygen isotope systematics of the Banda Arc: low δ18O despite involvement of subducted continental material in magma genesis. Geochim Cosmochim Acta 65:589–609

    Article  Google Scholar 

  • Whitford DJ, Jezek PA (1979) Origin of late-Cenozoic lavas from the Banda arc, Indonesia; trace element and Sr Isotope evidence. Contrib Mineralog Petrol 68:141–150

    Article  Google Scholar 

  • Whitford DJ, Compston W, Nicholls IA, Abbott MJ (1977) Geochemistry of late Cenezoic lavas from eastern Indonesia: role of subducted sediments in petrogenesis. Geology 5:571–575

    Article  Google Scholar 

  • Whitford DJ, White WM, Jezek PA (1981) Neodymium isotopic composition of Quaternary island arc lavas from Indonesia. Geochim Cosmochim Acta 45:989–995

    Article  Google Scholar 

  • Wilkinson JJ, Johnston JD (1996) Pressure fluctuations, phase separation, and gold precipitation during seismic fracture propagation. Geology 24:395–398

    Article  Google Scholar 

  • Wilkinson JJ, Boyce AJ, Earls G, Fallick AE (1999) Gold remobilization by low-temperatue brines: evidence from the Curraghinalt gold deposit, Northern Ireland. Econ Geol 94:289–296

    Article  Google Scholar 

  • Williamson A, Hancock G (eds) (2005) The geology and mineral potential of Papua New Guinea. Papua New Guinea Department of Mining, Port Moresby, p 151

    Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice-Hall, Upper Saddle River, NJ, p 697

    Google Scholar 

  • Zhao Z-F, Zheng Y-F, Wei C-S, Wu Y-B (2007) Post-collisional granitoids from the Dabie orogen in China: Zircon U–Pb age, element and O isotope evidence for recycling of subducted continental crust. Lithos 93:248–272

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Herrington .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrington, R.J., Brown, D. (2011). The Generation and Preservation of Mineral Deposits in Arc–Continent Collision Environments. In: Arc-Continent Collision. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_6

Download citation

Publish with us

Policies and ethics