Skip to main content

Structural Analysis of Deformed Central Peak Sediments

  • Chapter
  • First Online:
The Mjølnir Impact Event and its Consequences

Part of the book series: Impact Studies ((IMPACTSTUD))

  • 567 Accesses

Abstract

The buried Mjølnir crater in the Barents Sea (Figs. 1.8 and 1.10) classifies as a complex impact structure with a central peak and an initially subtle peak ring (Gudlaugsson 1993; Dypvik et al. 1996, 2004b; Tsikalas et al. 1999). The Mjølnir bolide hit the paleo-Barents Sea (˜400–500 m water-depth at the time of impact) at an impact angle of 45° from a SW-SSW direction (Tsikalas ). The crater later underwent collapse, leveling by erosion and redepostion and burial (Smelror et al. ; Tsikalas et al. 2002b). Due to post-impact Cenozoic uplift and erosion the central peak is presently found a few tens of meters below the seafloor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arthur MA, Carson B, van Huene R (1980) Initial tectonic deformation of hemipelagic sediment at the leading edge of the Japan convergent margin. Initial Report Deep Sea Drilling Project, 56, 57, Part 1:569–613

    Google Scholar 

  • Bremer GMA, Smelror M, Nagy J, Vigran JO (2004) Biotic responses to the Mjølnir meteorite impact, Barents Sea: evidence from a core drilled within the crater. In: Dypvik H, Burchell M, Claeys P (eds) Cratering in marine environments and on ice, Springer Series in Impact studies. Springer, Berlin-Heidelberg, pp 21–38

    Chapter  Google Scholar 

  • Carson B, van Huene R, Arthur M (1982) Small-scale deformation structures and physical properties related to convergence in Japan. Trench slope sediments. Tectonics 1:277–302

    Article  Google Scholar 

  • Cartwright JA, Lonergan L (1996) Volumetric contraction during compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems. Basin Res 8:183–193

    Article  Google Scholar 

  • Clausen JA, Gabrielsen RH, Johnsen E, Korstgård J (2003) Fault architecture and clay smear distribution. Examples from field studies and drained ringshear experiments. Norwegian J Geol 83:131–146

    Google Scholar 

  • Dypvik H, Gudlaugsson ST, Tsikalas F, Attrep M Jr, Ferrell RE Jr, Krinsley DH, Mørk A, Faleide JI, Nagy J (1996) The Mjølnir structure – an impact crater in the Barents Sea. Geology 24:779–782

    Article  Google Scholar 

  • Dypvik H, Mørk A, Smelror M, Sandbakken PT, Tsikalas F, Vigran JO, Bremer GMA, Nagy J, Gabrielsen RH, Faleide JI, Bahiru M, Weiss H (2004b) Impact breccia and ejecta from Mjølnir crater in the Barents Sea – The Ragnarok Formation and Sindre Bed. Nor Geologisk Tidsskrift 84:143–167

    Google Scholar 

  • Dypvik H, Sandbakken PT, Postma G, Mørk A (2004c) Early postimpact sedimentation around the central high of the Mjølnir impact crater (Barents Sea, Late Jurassic). Sediment Geol 168:227–247

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe – a handbook of shockmetamorphic effects in terrestrial meteorite impact structures. Lunar and Planetary Iinstitute Contribution No 954, Lunar and Planetary Institute, Houston, p 120

    Google Scholar 

  • Gabrielsen RH (1984) Longlived fault zones and their influence on the development of the southwestern Barents Sea. J Geol Soc Lond 141:651–662

    Article  Google Scholar 

  • Gabrielsen RH, Færseth RB, Jensen LN, Kalheim JE, Riis F (1990) Structural elements of the Norwegian Continental Shelf. Part I: The Barents Sea Region. Norwegian Pet Directorate Bull 6:33

    Google Scholar 

  • Gabrielsen RH, Grunnaleite I, Ottesen S (1992a) Reactivation of fault complexes in the Loppa High area, southwestern Barents Sea. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:631–641

    Google Scholar 

  • Gabrielsen RH, Grunnaleite I, Rasmussen E (1997) Cretaceous and Tertiary inversion in the Bjørnøyrenna Fault Complex, south-western Barents Sea. Mar Pet Geol 14(2):165–178

    Article  Google Scholar 

  • Gabrielsen RH, Kløvjan OS (1997) Late Jurassic-early Cretaceous caprocks of the southwestern Barents Sea: Fracture systems and rock mechanical properties. In: Møller-Pedersen P, Koestler AG (eds) Hydrocarbon seals – importance for exploration and production. Norwegian Petroleum Society Special Publication 7, Elsevier, Amsterdam, pp 73–89

    Chapter  Google Scholar 

  • Gudlaugsson ST (1993) Large impact crater in the Barents Sea. Geology 21:291–294

    Article  Google Scholar 

  • Henriet JP, De Batist M, Verschuren M (1991) Early fracturing of Palaeogene clays, southernmost North Sea: relevance to mechanisms of primary hydrocarbon migration. In: Spencer AM (ed) Generation, accumulation, and production of Europes hydrocarbons. Special Publication of the European Association of Petroleum Geoscientists, Oxford University Press, Oxford, pp 217–227

    Google Scholar 

  • Kenkmann T (2002) Folding within seconds. Geology 30:231–234

    Article  Google Scholar 

  • Kenkmann T (2003) Dike formation, cataclastic flow and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth Planet Sci Lett 214:43–58

    Article  Google Scholar 

  • Kenkmann T, Jahn A, Scherler D, Ivanov BA (2005) Structure and formation of a central uplift: A case study at the Upheaval Dome impact crater, Utah. In: Kenkmann T., Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol Soc Am Spec Paper 384:85–115

    Google Scholar 

  • Kriens BJ, Shoemaker EM, Herkenhoff KE (1999) Geology of the Upheaval Dome impact structure, southeast Utah. J Geophys Res 194:18867–18887, doi: 10.1029/1998JE000587

    Article  Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process. Oxford University Press & Clarendon Press, Oxford, p 245

    Google Scholar 

  • Nyland B, Jensen LN, Skagen J, Skarpnes P, Vorren TO (1992) Tertiary uplift and erosion in the Barents Sea: Magnitude, timing, and consequences. In: Structural and tectonic modeling and its application to the petroleum geology. Norwegian Pet Soc Spec Publ 1:153–162

    Google Scholar 

  • Okubu CH, Schultz RA (2007) Compactional deformation bands in Wingate Sandstone; additional evidence of an impact origin of Upheaval Dome, Utah. Earth Planet Sci Lett 256:169–181

    Article  Google Scholar 

  • Pascal C, Gabrielsen RH (2001) Numerical modelling of Cenozoic stress patterns in the mid Norwegian margin and the northern North Sea. Tectonics 20:585–599

    Article  Google Scholar 

  • Shuvalov VV, Dypvik H (2004) Ejecta formation and crater development of the Mjølnir impact. Meteorit Planet Sci 39:467–479

    Article  Google Scholar 

  • Shuvalov V, Dypvik H, Tsikalas F (2002) Numerical simulations of the Mjølnir marine impact crater. J Geophys Res 107:doi 10.1029/2001JE001698

    Google Scholar 

  • Skagen JI (1992) Effects of hydrocarbon potential caused by Tertiary uplift and erosion in the Barents Sea. In: Vorren TO, Bergsager E, Dahl-Stamnes ØA, Holter E, Johansen B, Lie E, Lund, TB (eds) Arctic geology and petroleum potential. Norwegian Pet Soc Spec Publ 2:711–719

    Google Scholar 

  • Smelror M, Kelly SRA, Dypvik H, Mørk A, Nagy J, Tsikalas F (2001a) Mjølnir (Barents Sea) meteorite impact offers a Volgian-Ryazanian boundary marker. Newsl Stratigr 38:129–140

    Article  Google Scholar 

  • Tsikalas F (2005) Mjølnir Ccater as a result of oblique impact: Asymmetry evidence constrains impact direction and angle. In: Koeberl C, Henkel H (eds) Impact tectonism. Impact Studies. Springer, Berlin-Heidelberg, pp 285–306

    Chapter  Google Scholar 

  • Tsikalas F, Faleide JI, Eldholm O, Dypvik H (2002b) Seismic correlation of the Mjølnir marine impact crater to shallow boreholes. In: Plado J, Pesonen LJ (eds) Impacts in Precambrian Shields. Impact Studies. Springer, Berlin-Heidelberg, pp 307–321

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI (1998a) Collapse, infilling, and postimpact deformation at the Mjølnir impact structure, Barents Sea. Geol Soc Am Bull 110:537–552

    Article  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (1999) Mjølnir Structure, Barents Sea: A marine impact crater laboratory. In: Dressler B, Sharpton VL (eds) Large meteorite impacts and planetary evolution II. Geological Society of America Special Paper 339, Boulder, pp 193–204

    Chapter  Google Scholar 

  • Tsikalas F, Gudlaugsson ST, Faleide JI, Eldholm O (2002a) The Mjølnir marine impact crater porosity anomaly. Deep Sea Res Part II 49:1103–1120

    Article  Google Scholar 

  • Smelror M, Dypvik H, Tsikalas F (eds) (2001) 7th Workshop of the ESF Impact Programme. Submarine craters and ejecta-crater correlations, and icy impacts and icy targets. Abstract and proceedings of the Norwegian Geological Society, vol 1, p 114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy H. Gabrielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabrielsen, R.H., Dypvik, H., Shuvalov, V. (2010). Structural Analysis of Deformed Central Peak Sediments. In: Tsikalas, F., Dypvik, H., Smelror, M. (eds) The Mjølnir Impact Event and its Consequences. Impact Studies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88260-2_8

Download citation

Publish with us

Policies and ethics