Skip to main content

Heart and Coronary Arteries

  • Chapter
MR Angiography of the Body

Part of the book series: Diagnostic Imaging ((Med Radiol Diagn Imaging))

  • 1133 Accesses

Abstract

The current status of technological development is such that coronary magnetic resonance angiog-raphy (MRA) has a marginal role in the field of noninvasive evaluation of this arterial district. Nevertheless, in several clinical applications, such as congenital abnormalities of coronaries or pathologies affecting young patients, coronary MRA is considered as the fi rst choice tools and accredited with high diagnostic accuracy. New technical improvements such as high-field scanners (3 T) and multichannel surface coils may turn in favor of coronary MRA because of the intrinsic fl exibility and lack of ionizing radiations. In this chapter, the main technological aspects as well the more relevant clinical applications and limitations are commented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araoz PA, Glockner JF, McGee K P, et al. (2005) 3 Tesla MR imaging provides improved contrast in first-pass myocar-dial perfusion imaging over a range of gadolinium doses. J Cardiovasc Magn Reson 7(3):559–564

    Article  PubMed  Google Scholar 

  • Aurigemma G P, Reichek N, Axel L, et al. (1989) Noninvasive determination of coronary artery bypass graft patency by cine magnetic resonance imaging. Circulation. 80(6):1595–1602

    CAS  PubMed  Google Scholar 

  • Bluemke DA, Achenbach S, Budoff M, et al. (2008) Noninvasive coronary artery imaging: magnetic resonance angiography and multidetector computed tomography angiography: a scientific statement from the American heart association committee on cardiovascular imaging and intervention of the council on cardiovascular radiology and intervention, and the councils on clinical cardiology and cardiovascular disease in the young. Circulation 118:586–606

    Article  PubMed  Google Scholar 

  • Bornstedt A, Hombach V, Kouwenhoven M, et al. (2008) Whole-heart coronary angiography at isotropic spatial resolution: high sense acceleration at 3T utilizing a 32 element cardiac receive coil. In: Proceedings of the 16th Annual Meeting of ISMRM, Toronto, Canada, p 941

    Google Scholar 

  • Brenner P, Wintersperger B, von Smekal A, et al. (1999) Detection of coronary artery bypass graft patency by contrast enhanced magneticresonance angiography. Eur J Cardiothorac Surg 15(4):389–393

    Article  CAS  PubMed  Google Scholar 

  • Debatin JF, Strong JA, Sostman HD, et al. (1993) MR characterization of blood flow in native and grafted internal mammary arteries. J Magn Reson Imaging 3:443–450

    Article  CAS  PubMed  Google Scholar 

  • Foo TK, Ho VB, Saranathan M, et al. (2005) Feasibility of integrating high-spatial-resolution 3D breath-hold coronary MR angiography with myocardial perfusion and viability examinations. Radiology 235:1025–1030

    Article  PubMed  Google Scholar 

  • Galjee MA, van Rossum AC, Doesburg T, et al. (1996) Value of magnetic resonance imaging in assessing patency and function of coronary artery bypass grafts: an angiographi-cally controlled study. Circulation 93:660–666.

    CAS  PubMed  Google Scholar 

  • Gharib AM, Herzka DA, Ustun AO, et al. (2007 Oct) Coronary MR angiography at 3T during diastole and systole. J Magn Reson Imaging 26(4):921–926

    Article  PubMed  Google Scholar 

  • Goldfarb JW, Edelman RR. (1998) Coronary arteries: breath-hold, gadolinium-enhanced, three-dimensional MR angriog-raphy. Radiology 206:830–834

    CAS  PubMed  Google Scholar 

  • Hardy CJ, Cline HE, Giaquinto RO, et al. (2006) 32-Element receiver-coil array for cardiac imaging. Magn Reson Med 55:1142–1149

    Article  PubMed  Google Scholar 

  • Hoffman MBM, Henson RE, Kovaks SJ, et al. (1999) Blood poll agent strongly improves 3D magnetic resonance coronary angiography using an inversion pre-pulse. Magn Reson Med 41(2):360–367

    Article  Google Scholar 

  • Ishida N, Sakuma H, Cruz BP, et al. (2001) Mr flow measurement in the internal mammary artery-to-coronary artery bypass graft: comparison with graft stenosis at radio-graphic angiography. Radiology 220(2):441–447

    CAS  PubMed  Google Scholar 

  • Kawada N, Sakuma H, Cruz BC, et al. (1999) Noninvasive detection of significant stenosis in the coronary artery bypass grafts using fast velocity-encoded cine MRI. In: Book of Abstracts, 2nd Annual Meeting of the Society for Cardiovascular Magnetic Resonance, p 82

    Google Scholar 

  • Kessler W, Achenbach S, Moshage W, et al (1997) Usefulness of respiratory gated magnetic resonance coronary angiogra-phy in assessing narrowings > or = 50% in diameter in native coronary arteries and in aortocoronary bypass conduits. Am J Cardiol 80(8):989–993

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Danias PG, Stuber M, et al. (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869

    Article  CAS  PubMed  Google Scholar 

  • Kreitner KF, Voigtländer T, Wittlinger T, et al (2000) Flow quantification in coronary and bypass vessels with MR phase contrast technique Radiologe 40(2):143–149

    Article  CAS  PubMed  Google Scholar 

  • Langerak SE, Vliegen HW, de Roos A, et al. (2002) Detection of vein graft disease using high-resolution magnetic resonance angiography. Circulation 105(3):328–333

    Article  PubMed  Google Scholar 

  • Li D, Dolan R P, Walkovitch RC, et al. (1998) Three-dimensional MRI of coronary arteries using an intravascular contrast agent. Magn Reson Med 39:1014–1018

    Article  CAS  PubMed  Google Scholar 

  • Nagel E, Thouet T, Klein C, et al. (2003) Noninvasive determination of coronary blood flow velocity with cardiovascular magnetic resonance in patients after stent deployment. Circulation 107:1738–1743

    Article  PubMed  Google Scholar 

  • Nguyen TD, Spincemaille P, Prince MR, et al. (2006) Cardiac fat navigator-gated steady-state free precession 3D magnetic resonance angiography of coronary arteries. Magn Reson Med 56:210–215

    Article  PubMed  Google Scholar 

  • Niendorf T, Hardy C., Giaquinto RO, et al. (2006) Toward single breath-hold whole-heart coverage coronary MRA using highly accelerated parallel imaging with a 32-channel MR system. Magn Reson Med 56:167–176

    Article  PubMed  Google Scholar 

  • Okada T, Kanao S, Ninomiya A, et al. (2009) Whole-heart coronary magnetic resonance angiography with parallel imaging: comparison of acceleration in one-dimension vs. two-dimensions. Eur J Radiol doi:10.1016/j.ejrad.2008.06.005

    Google Scholar 

  • Paulin S, von Schulthess GK, Fossel E, et al. (1987) MR imaging of the aortic root and proximal coronary arteries. Am J Roentgenol 148(4):665–670

    CAS  Google Scholar 

  • Redberg RF, Walsh J (2008) Pay now, benefits may follow—the case of cardiac computed tomographic angiography. N Engl J Med 359(22):2309–2311

    Article  CAS  PubMed  Google Scholar 

  • van Rossum AC, Bedaux WLF, Hofman MBM (1999) Morphologic and functional evaluation of coronary artery bypass conduits. J Magn Reson Imaging 10:734–740

    Article  PubMed  Google Scholar 

  • Sakuma H, Globits S, O'Sullivan M, et al. (1996) Breath-hold MR measurements of blood flow velocitiy in internal mammary arteries and coronary artery bypass grafts. J Magn Reson Imaging 6:219–222

    Article  CAS  PubMed  Google Scholar 

  • Sakuma H, Ichikawa Y, Suzawa N, et al. (2005) Assessment of coronary arteries with total study time of less than 30 minutes by using whole-heart coronary MR angiography. Radiology 237(1):316–321

    Article  PubMed  Google Scholar 

  • Sakuma H, Kawada N, Takeda K, et al. (1999) MR measurement of coronary blood flow. J Magn Reson Imaging 10(5):728–733

    Article  CAS  PubMed  Google Scholar 

  • Santos JM, Cunningham CH, Lustig M, et al. (2006) Single breath-hold whole-heart MRA using variable-density spirals at 3T. Magn Reson Med 55(2):371–379

    Article  PubMed  Google Scholar 

  • Shankaranarayanan A, Fung M, Beatty P, et al. (2008) 128-Channel highly-acceerated breah-held 3D coronary MR imaging. In: Proceedings of the 16th Annual Meeting of ISMRM, Toronto, Canada, p 314

    Google Scholar 

  • von Smekal A, Knez A, Seelos KC, et al. (1997) A comparison of ultrafast computed tomography, magnetic resonance angiography and selective angiography for the detection of coronary bypass patency. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 166(3):185–191

    Article  Google Scholar 

  • Spuentrup E, Katoh M, Buecker A, et al. (2004) Free-breathing 3D steady-state free precession coronary MR angiography with radial k-space sampling: comparison with cartesian k-space sampling and cartesian gradient-echo coronary MR angiography-pilot study. Radiology 231:581–586

    Article  PubMed  Google Scholar 

  • Spuentrup E, Ruebben A, Mahnken A, et al. (2005) Artifact-free coronary magnetic resonance angiography and coronary vessel wall imaging in the presence of a new, metallic, coronary magnetic resonance imaging stent. Circulation 111:1019–1026

    Article  PubMed  Google Scholar 

  • Stehning C, Bornert P, Nehrke K, et al. (2004) Fast isotropic volumetric coronary MR angiography using free-breathing 3D radial balanced FFE acquisition. Magn Reson Med 52(1):197–203

    Article  CAS  PubMed  Google Scholar 

  • Stehning C, Bornert P, Nehrke K, et al. (2005) Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med 54:476–480

    Article  CAS  PubMed  Google Scholar 

  • Stuber M, Botnar RM, Danias PG, et al. (1999a) Submillimiter three-dimensional coronary MR angiography with realtime navigator correction: comparison of navigator locations. Radiology 212:579–587

    CAS  Google Scholar 

  • Stuber M, Botnar RM, Danias PG, et al. (1999b) Contrast agent-enhanced free breathing, three dimensional coronary magnetic resonance angiography. J Magn Reson Imaging 10(5):790–799

    Article  CAS  Google Scholar 

  • Voigtländer T, Kreitner KF, Wittlinger T, et al (2001) MR angiography and flow measurement in coronary arteries and coronary bypass grafts Z Kardiol 90(12):929–938

    Article  PubMed  Google Scholar 

  • Walpoth BH, Müller MF, Genyk I, et al. (1999) Evaluation of coronary bypass flow with color-Doppler and magnetic resonance imaging techniques: comparison with intraop-erative flow measurements. Eur J Cardiothorac Surg 15(6):795–802

    Article  CAS  PubMed  Google Scholar 

  • Weber OM, Martin AJ, Higgins CB (2004) Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med 50(6):1223–1228

    Article  Google Scholar 

  • Wittlinger T, Martinovic I, Noeske R, et al. (2005) High-field MR angiography on an in vitro stenosis model determination of the spatial resolution on 1.5 and 3T in correlation to flow velocity and contrast medium concentration. J Cardiovasc Magn Reson. 7(4):623–630

    CAS  PubMed  Google Scholar 

  • White RD, Caputo GR, Mark AS, et al. (1987) Coronary artery bypass graft patency: noninvasive evaluation with MR imaging. Radiology 164(3):681–686

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lombardi, M., Milanesi, M. (2010). Heart and Coronary Arteries. In: Neri, E., Cosottini, M., Caramella, D. (eds) MR Angiography of the Body. Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79717-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79717-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79716-6

  • Online ISBN: 978-3-540-79717-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics