Skip to main content

Stereogenic Centers and Planning of Syntheses

  • Chapter
Elements of Synthesis Planning
  • 2078 Accesses

Abstract

Isolated stereogenic centers of chiral target structures and first stereogenic centers of sequences of neighboring stereogenic centers are generated by asymmetric synthesis, or by resolution of a racemate, or acquired from the chiral pool. Sequences of neighboring stereogenic centers are generated from an initial one by methods of diastereoselective synthesis. They are frequently perceived as patterns, for the synthesis of which special methods are established.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Quinkert, H. Stark, Angew. Chem. Int. Ed. Engl. 1983, 22, 637–655. (Angew. Chem. 1983, 95, 651–669.

    Article  Google Scholar 

  2. A. Belan, J. Bolte, A. Fauve, J. G. Gourcy, H. Veschambre, J. Org. Chem. 1987, 52, 256–260.

    Article  CAS  Google Scholar 

  3. E. J. Corey, R. K. Bakshi, S. Shibata, J. Am. Chem. Soc. 1987, 109, 5551–5553.

    Article  CAS  Google Scholar 

  4. P. K. Jadhav, K. S. Bhat, P. T. Perumal, H. C. Brown, J. Org. Chem. 1986, 51, 432–439.

    Article  CAS  Google Scholar 

  5. D. Hoppe, T. Hense, Angew. Chem. Int. Ed. Engl. 1997, 36, 2282–2316. (Angew. Chem. 1997, 109, 2376–2410).

    Article  CAS  Google Scholar 

  6. J. W. Scott in Asymmetric Synthesis (Eds.: J. D. Morrison, J. W. Scott), Academic Press, New York, vol. 4, 1984, pp. 1–226.

    Google Scholar 

  7. K. Mori, Tetrahedron 1975, 31, 3011–3012.

    Article  CAS  Google Scholar 

  8. H. R. Schuler, K. N. Slessor, Can. J. Chem. 1977, 55, 3280–3287.

    Article  CAS  Google Scholar 

  9. B. D. Johnston, K. N. Slessor, Can. J. Chem. 1979, 57, 233–235.

    Article  CAS  Google Scholar 

  10. S. Takano, M. Yanase, M. Takahashi, K. Ogasawara, Chem. Lett. 1987, 16, 2017–2020.

    Article  Google Scholar 

  11. K. Nakamura, M. Kinoshita, A. Ohno, Tetrahedron 1995, 51, 8799–8808.

    Article  CAS  Google Scholar 

  12. A. Steinreiber, A. Stadler, S. F. Mayer, K. Faber, O. C. Kappe, Tetrahedron Lett. 2001, 42, 6283–6286.

    Article  CAS  Google Scholar 

  13. B. H. Lipshutz, J. M. Servesko, Angew. Chem., Int. Ed. 2003, 42, 4789–4792. (Angew. Chem. 2003, 115, 4937–4940).

    Article  CAS  Google Scholar 

  14. J. M. Brown in Comprehensive Asymmetric Catalysis (Eds.: E.-N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, vol. 1, 1999, pp. 121–182.

    Google Scholar 

  15. R. L. Halterman in Comprehensive Asymmetric Catalysis (Eds.: E.-N. Jacobsen, A. Pfaltz, H. Yamamoto), Springer, Berlin, vol. 1, 1999, pp. 183–195.

    Google Scholar 

  16. W. Oppolzer, R. J. Mills, M. Réglier, Tetrahedron Lett. 1986, 27, 183–186.

    Article  CAS  Google Scholar 

  17. W. Oppolzer, G. Poli, Tetrahedron Lett. 1986, 27, 4717–4720.

    Article  CAS  Google Scholar 

  18. S. Rendler, M. Oestreich, Angew. Chem., Int. Ed. 2007, 46, 498–504. (Angew. Chem. 2007, 119, 504–510).

    Article  CAS  Google Scholar 

  19. D. A. Evans, M. D. Ennis, D. J. Mathre, J. Am. Chem. Soc. 1982, 104, 1737–1739.

    Article  CAS  Google Scholar 

  20. F. Lopez, A. J. Minnaard, B. L. Feringa, Acc. Chem. Res. 2007, 40, 179–188.

    Article  CAS  Google Scholar 

  21. W. Oppolzer, P. Dudfield, T. Stevenson, T. Godel, Helv. Chim. Acta 1985, 68, 212–215.

    Article  CAS  Google Scholar 

  22. F. E. Ziegler, A. Kneisley, Tetrahedron Lett. 1985, 26, 263–266.

    Article  CAS  Google Scholar 

  23. C. Herber, B. Breit, Angew. Chem., Int. Ed. 2005, 44, 5267–5269. (Angew. Chem. 2005, 117, 5401–5403).

    Article  CAS  Google Scholar 

  24. B. M. Trost, T. P. Klun, J. Org. Chem. 1980, 45, 4256–4257.

    Article  CAS  Google Scholar 

  25. P. Mohr, N. Waespe-Sarcevic, C. Tamm, K. Gawronska, J. K. Gawronski, Helv. Chim. Acta 1983, 66, 2501–2511.

    Article  CAS  Google Scholar 

  26. B. Cambou, A. M. Klibanov, J. Am. Chem. Soc. 1984, 106, 2687–2692.

    Article  CAS  Google Scholar 

  27. R. Rossi, A. Carpita, M. Chini, Tetrahedron 1985, 41, 627–633.

    Article  CAS  Google Scholar 

  28. P. E. Sonnet, J. Org. Chem. 1982, 47, 3793–3796.

    Article  CAS  Google Scholar 

  29. A. G. Pepper, G. Procter, M. Voyle, J. Chem. Soc., Chem. Commun. 2002, 1066–1067.

    Google Scholar 

  30. C. Arsene, S. Schulz, Org. Lett. 2002, 4, 2869–2871.

    Article  CAS  Google Scholar 

  31. W. C. Still, J. C. Barrish, J. Am. Chem. Soc. 1983, 105, 2487–2489.

    Article  CAS  Google Scholar 

  32. K. Suzuki, E. Katayama, G. Tsuchihashi, Tetrahedron Lett. 1984, 25, 2479–2482.

    Article  CAS  Google Scholar 

  33. W. C. Still, J. A. Schneider, Tetrahedron Lett. 1980, 21, 1035–1038.

    Article  CAS  Google Scholar 

  34. Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93, 2207–2293.

    Article  CAS  Google Scholar 

  35. C. J. Cowden, I. Paterson, Org. React. 1997, 51, 1–200.

    CAS  Google Scholar 

  36. R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 1987, 26, 489–503. (Angew. Chem. 1987, 99, 503–517).

    Article  Google Scholar 

  37. I. Paterson, J. A. Channon, Tetrahedron Lett. 1992, 33, 797–800.

    Article  CAS  Google Scholar 

  38. I. Paterson, R. D. Tillyer, Tetrahedron Lett. 1992, 33, 4233–4236.

    Article  CAS  Google Scholar 

  39. J. A. Marshall, G. M. Schaaf, J. Org. Chem. 2001, 66, 7825–7831.

    Article  CAS  Google Scholar 

  40. O. Arjona, R. Menchaca, J. Plumet, J. Org. Chem. 2001, 66, 2400–2413.

    Article  CAS  Google Scholar 

  41. R. Stürmer, R. W. Hoffmann, Chem. Ber. 1994, 127, 2519–2526.

    Article  Google Scholar 

  42. R. W. Hoffmann, R. Stürmer, Chem. Ber. 1994, 127, 2511–2518.

    Article  CAS  Google Scholar 

  43. R. W. Hoffmann, R. Stürmer Towards Erythronolides, Efficient Synthesis of Contiguous Stereocenters in Antibiotics and Antiviral Compounds, Chemical Synthesis and Modification (Eds.: K. Krohn, H. Kirst, H. Maas), VCH Verlagsges., Weinheim, 1993, pp. 103–110.

    Google Scholar 

  44. M. Kalesse, M. Christmann, Synthesis 2002, 981–1003.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.W. Hoffmann .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoffmann, R. (2009). Stereogenic Centers and Planning of Syntheses. In: Elements of Synthesis Planning. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79220-8_10

Download citation

Publish with us

Policies and ethics