Skip to main content

The Double Pulsar: A Unique Lab for Relativistic Plasma Physics and Tests of General Relativity

  • Chapter
Neutron Stars and Pulsars

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 357))

Almost a hundred years after Einstein formulated his theory of general relativity (GR), efforts in testing GR and its concepts are still being made by many colleagues around the world, using many different approaches. To date GR has passed all experimental and observational tests with flying colours, but in light of recent progress in observational cosmology in particular, the question of whether alternative theories of gravity need to be considered is as topical as ever.

Many experiments are designed to achieve ever more stringent tests by either increasing the precision of the tests or by testing different, new aspects. Some of the most stringent tests are obtained by satellite experiments in the solar system, providing exciting limits on the validity of GR and alternative theories of gravity like tensor-scalar theories. However, solar-system experiments are made in the gravitational weak-field regime, while deviations from GR may appear only in strong gravitational fields. It happens that nature provides us with an almost perfect laboratory to test the strong-field regime using binary radio pulsars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. M. Barker, R. F. O'Connell, ApJ 199, L25 (1975).

    Article  ADS  Google Scholar 

  2. M. Burgay, A. Possenti, R. N. Manchester, et al., ApJ 624, L113–L116 (2005).

    Article  ADS  Google Scholar 

  3. M. Burgay, N. D'Amico, A. Possenti, et al., Nature 426, 531–533 (2003).

    Article  ADS  Google Scholar 

  4. W. A. Coles, M. A. McLaughlin, B. J. Rickett, et al., ApJ 623, 392–397 (2005).

    Article  ADS  Google Scholar 

  5. J. M. Cordes, T. J. W. Lazio, astro-ph/0207156.

    Google Scholar 

  6. T. Damour, J. H. Taylor, Phys. Rev. D 45, 1840–1868 (1992).

    Article  ADS  Google Scholar 

  7. T. Damour, G. Schäfer, Nuovo Cim. 101, 127 (1988).

    Article  ADS  Google Scholar 

  8. T. Damour, R. Ruffini, C R Acad Sci Paris Sci Math 279, 971–973 (1974).

    ADS  Google Scholar 

  9. T. Damour, J. H. Taylor, ApJ 366, 501–511 (1991).

    Article  ADS  Google Scholar 

  10. F. A. Jenet, S. M. Ransom, Nature 428, 919–921 (2004).

    Article  ADS  Google Scholar 

  11. V. Kalogera, C. Kim, D. R. Lorimer, et al., ApJ 601, L179–L182 (2004).

    Article  ADS  Google Scholar 

  12. M. Kramer, I. H. Stairs, R. N. Manchester, et al., Science 314, 97–102 (2006).

    Article  ADS  Google Scholar 

  13. M. Kramer, I. H. Stairs, R. N. Manchester, et al., Ann Phys 15, 34–42 (2006).

    Article  MathSciNet  Google Scholar 

  14. M. Kramer, ApJ 509, 856–860 (1998).

    Article  ADS  Google Scholar 

  15. K. Kuijken, G. Gilmore, MNRAS 239, 571 (1989).

    ADS  Google Scholar 

  16. A. G. Lyne, M. Burgay, M. Kramer, et al., Science 303, 1153–1157 (2004).

    Article  ADS  Google Scholar 

  17. R. N. Manchester, A. G. Lyne, F. Camilo, et al., MNRAS, 2001, 328, 17.

    Article  ADS  Google Scholar 

  18. R. N. Manchester, M. Kramer, A. Possenti, et al., ApJ 621, L49–L52 (2005).

    Article  ADS  Google Scholar 

  19. M. A. McLaughlin, A. G. Lyne, D. R. Lorimer, et al., ApJ 616, L131–L134 (2004).

    Article  ADS  Google Scholar 

  20. M. A. McLaughlin, M. Kramer, A. G. Lyne, et al., ApJ 613, L57–L60 (2004).

    Article  ADS  Google Scholar 

  21. M. Lyutikov, MNRAS 362, 1078–1084 (2005).

    Article  ADS  Google Scholar 

  22. I. H. Stairs, S. E. Thorsett, J. H. Taylor, et al., ApJ 581, 501–508 (2002).

    Article  ADS  Google Scholar 

  23. I. H. Stairs, S. E. Thorsett, R. J. Dewey, et al., MNRAS 373, L50–L54 (2006).

    ADS  Google Scholar 

  24. E. M. Standish, A&A 336, 381–384 (1998).

    ADS  Google Scholar 

  25. J. H. Taylor, A. Wolszczan, T. Damour, et al., Nature 355, 132–136 (1992).

    Article  ADS  Google Scholar 

  26. J. H. Taylor, Philos Trans R Soc London A 341, 117–134 (1992).

    Article  ADS  Google Scholar 

  27. J. M. Weisberg, J. H. Taylor, The relativistic binary pulsar B1913+16, in: F. Rasio, I. H. Stairs (eds.), Binary radio pulsars, Astronomical Society of the Pacific, San Francisco, 2005, pp. 25–31.

    Google Scholar 

  28. N. Wex, Class Quantum Grav 12, 983 (1995).

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kramer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kramer, M. (2009). The Double Pulsar: A Unique Lab for Relativistic Plasma Physics and Tests of General Relativity. In: Becker, W. (eds) Neutron Stars and Pulsars. Astrophysics and Space Science Library, vol 357. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76965-1_5

Download citation

Publish with us

Policies and ethics