Skip to main content

Genetics and Biochemistry of RNAi in Drosophila

  • Chapter
RNA Interference

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 320))

Abstract

RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. It has gained wide usage in genetics. While having the potential for many practical applications, it is a reflection of a much broader spectrum of small RNA-mediated processes in the cell. The RNAi machinery was originally perceived as a defense mechanism against viruses and transposons. While this is certainly true, small RNAs have now been implicated in many other aspects of cell biology. Here we review the current knowledge of the biochemistry of RNAi in Drosophila and the involvement of small RNAs in RNAi, transposon silencing, virus defense, transgene silencing, pairing-sensitive silencing, telomere function, chromatin insulator activity, nucleolar stability, and heterochromatin formation.

The discovery of the role of RNA molecules in the degradation of mRNA transcripts leading to decreased gene expression resulted in a paradigm shift in the field of molecular biology. Transgene silencing was first discovered in plant cells (Matzke et al. 1989; van der Krol et al. 1990; Napoli et al. 1990) and can occur on both the transcriptional and posttranscriptional levels, but both involve short RNA moieties in their mechanism. RNA interference (RNAi) is a type of gene silencing mechanism in which a double-stranded RNA (dsRNA) molecule directs the specific degradation of the corresponding mRNA (target RNA). The technique of RNAi was first discovered in Caenorhabditis elegans in 1994 (Guo and Kemphues 1994). Later the active component was found to be a dsRNA (Fire et al. 1998). In subsequent years, it has been found to occur in diverse eukaryotes such as Drosophila, Schizosaccharomyces pombe, Dictyostelium, Neurospora, plants, mice, humans, and many other organisms (Baulcombe 2004; Hall et al. 2003; Kennerdell and Carthew 2000; Paddison et al. 2002). It is possible that RNAi is a reflection of a much broader spectrum of small RNA functions in the cell as described below.

It is believed that RNAi evolved as a means of protection against viruses and against aberrant transposition by transposable elements in the genome (Kalmykova et al. 2005; Sijen and Plasterk 2003). However recent discoveries of the involvement of small RNAs in many other processes might suggest that these defense mechanisms, while obviously important, might actually be derivative processes rather than evolutionarily basal in origin. The RNAi genes also play an important role in the maintenance of centromeric heterochromatin (Volpe et al. 2002; Pal-Bhadra et al. 2004b) and germline stem cell division (Kennerdell et al. 2002). As a technique, RNAi can also be used as a tool for gene silencing studies and for developing (potentially) therapeutic agents (Jacque et al. 2002).

The trigger for all RNAi-related mechanisms known to date is a dsRNA molecule. This molecule can be introduced artificially or synthesized endogenously, for example, from heterochromatic repeats. The most potent source of artificial dsRNA is a sequence of about 500–700 bp cloned as inverted repeats, which is transcribed to give hairpin-loop dsRNA (Hannon and Conklin 2004). This dsRNA is then cleaved by specialized enzymes and assembled into a multiprotein complex. This results in specific cleavage of the target mRNA by virtue of complementarity between the small RNA (from the trigger) and the target mRNA. A series of genetic, biochemical, and structural studies have identified the different components of the RNAi machinery in Drosophila and also elucidated many mechanistic steps as described below (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhtar A, Becker PB (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage compensation in Drosophila. Mol Cell 5:367–375.

    PubMed  Google Scholar 

  • Amarzguioui M, Holen T, Babaie E, Prydz H (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595.

    PubMed  Google Scholar 

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–893.

    PubMed  Google Scholar 

  • Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA (2001) Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr Biol 11:1017–1027.

    PubMed  Google Scholar 

  • Aravin AA, Lagos-Quintana M, Yalcin A, Zavolan M, Marks D, Snyder B, Gaasterland T, Meyer J, Tuschl T (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5:337–350.

    PubMed  Google Scholar 

  • Bantignies F, Grimaud C, Lavrov S, Gabut M, Cavalli G (2003) Inheritance of Polycomb-dependent chromosomal interactions in Drosophila. Genes Dev 17:2406–2420.

    PubMed  Google Scholar 

  • Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363.

    PubMed  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis Argonaute1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933.

    PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366.

    PubMed  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (1999) Role of the male specific lethal (msl) genes in modifying the effects of sex chromosomal dosage in Drosophila. Genetics 152:249–268.

    PubMed  Google Scholar 

  • Bhadra U, Pal-Bhadra M, Birchler JA (2000) Histone acetylation and gene expression analysis of sex lethal mutants in Drosophila. Genetics 155:753–763.

    PubMed  Google Scholar 

  • Bingham PM, Levis R, Rubin GM (1981) Cloning of DNA sequences from the white locus of D. melanogaster by a novel and general method. Cell 25:693–704.

    PubMed  Google Scholar 

  • Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specific transposon family. Cell 29:995–1004.

    PubMed  Google Scholar 

  • Birchler JA, Pal-Bhadra M, Bhadra U (2003a) Transgene cosuppression in animals. In: Hannon G (ed) RNAi: a guide to gene silencing. Cold Spring Harbor Press, Cold Spring Harbor, pp 23–42.

    Google Scholar 

  • Birchler JA, Pal-Bhadra M, Bhadra U (2003b) Dosage dependent gene regulation and the compensation of the X chromosome in Drosophila males. Genetica 117:179–190.

    PubMed  Google Scholar 

  • Black DM, Jackson MS, Kidwell MG, Dover GA (1987) KP elements repress P-induced hybrid dysgenesis in Drosophila melanogaster. EMBO J 6:4125–4135.

    PubMed  Google Scholar 

  • Blumenstiel JP, Hartl DL (2005) Evidence for maternally transmitted small interfering RNA in the repression of transposition in Drosophila virilis. Proc Natl Acad Sci USA 102:15965–15970.

    PubMed  Google Scholar 

  • Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, Hannon GJ (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103.

    PubMed  Google Scholar 

  • Bucheton A, Busseau I, Teninges D (2002) I element in Drosophila melanogaster. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington DC, pp 796–812.

    Google Scholar 

  • Caudy AA, Myers M, Hannon GJ, Hammond SM (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev 16:2491–2496.

    PubMed  Google Scholar 

  • Caudy AA, Ketting RF, Hammond SM, Denli AM, Bathoorn AM, Tops BB, Silva JM, Myers MM, Hannon GJ, Plasterk RH (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425:411–414.

    PubMed  Google Scholar 

  • Chaboissier MC, Busseau I, Prosser J, Finnegan DJ, Bucheton A (1990) Identification of a potential RNA intermediate for transposition of the LINE-like element I factor in Drosophila melanogaster. EMBO J 9:3557–3563.

    PubMed  Google Scholar 

  • Chaboissier MC, Bucheton A, Finnegan DJ (1998) Copy number control of a transposable element, the I factor, a LINE-like element in Drosophila. Proc Natl Acad Sci USA 95:11781–11785.

    PubMed  Google Scholar 

  • Chen Y, Pane A, Schupbach T (2007) Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr Biol 17:1–6.

    Google Scholar 

  • Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9:1034–1048.

    PubMed  Google Scholar 

  • Ciapponi L, Cenci G, Ducau J, Flores C, Johnson-Schlitz D, Gorski MM, Engels WR, Gatti M (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr Biol 14:1360–1366.

    PubMed  Google Scholar 

  • Coller J, Parker R (2004) Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890.

    PubMed  Google Scholar 

  • Cortes A, Huertas D, Fanti L, Pimpinelli S, Marsellach FX, Pina B, Azorin F (1999) DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy. EMBO J 18:3820–3833.

    PubMed  Google Scholar 

  • Csink AK, Linsk R, Birchler JA (1994) The Lighten up (Lip) gene of Drosophila melanogaster, a modifier of retroelement expression, position effect variegation and white locus insertion alleles. Genetics 138:153–163.

    PubMed  Google Scholar 

  • de Wit E, Greil F, van Steensel B (2005) Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res 15:1265–1273.

    PubMed  Google Scholar 

  • DeCerbo J, Carmichael GG (2005) Retention and repression: fates of hyperedited RNAs in the nucleus. Curr Opin Cell Biol 17:302–308.

    PubMed  Google Scholar 

  • Deng H, Zhang W, Bao X, Martin JN, Girton J, Johansen J, Johansen KM (2005) The JIL-1 kinase regulates the structure of Drosophila polytene chromosomes. Chromosoma 114:173–182.

    PubMed  Google Scholar 

  • Deshpande G, Calhoun G, Schedl P (2005) Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation. Genes Dev 19:1680–1685.

    PubMed  Google Scholar 

  • Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17:438–442.

    PubMed  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001a) RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15:188–200.

    PubMed  Google Scholar 

  • Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001b) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20:6877–6888.

    PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811.

    PubMed  Google Scholar 

  • Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3:e236.

    PubMed  Google Scholar 

  • Frolov MV, Birchler JA (1998) Mutation in P0, a dual function ribosomal protein/apurinic/apyrimidinic endonuclease, modifies gene expression and position effect variegation in Drosophila. Genetics 150:1487–1495.

    PubMed  Google Scholar 

  • Galiana-Arnoux D, Dostert C, Schneemann A, Hoffman JA, Imler JL (2006) Essential function in vivo for Dicer-2 in host defense against RNA viruses in Drosophila. Nat Immunol 7:590–597.

    PubMed  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2004) A link between mRNA turnover and RNA interference in Arabidopsis. Science 306:1046–1048.

    PubMed  Google Scholar 

  • Girard A, Sachidanandam R, Hannon GJ, Carmell M (2006) A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202.

    PubMed  Google Scholar 

  • Green CM, Almouzni G (2003) Local action of the chromatin assembly factor CAF-1 at sites of nucleotide excision repair in vivo. EMBO J 22:5163–5174.

    PubMed  Google Scholar 

  • Grimaud C, Bantignies F, Pal-Bhadra M, Bhadra U, Cavalli G (2006) RNAi components are required for nuclear clustering of Polycomb Group Response Elements. Cell 124:957–971.

    PubMed  Google Scholar 

  • Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, Siomi MC (2007) A slicer-mediated mechanisms for repeat-associated siRNA 5G end formation in Drosophila. Science 315:1587–1590.

    PubMed  Google Scholar 

  • Guo S, Kemphues KJ (1994) par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81:611–620.

    Google Scholar 

  • Haley B, Zamore PD (2004) Kinetic analysis of the RNAi enzyme complex. Nat Struct Mol Biol 11:599–606.

    PubMed  Google Scholar 

  • Haley KJ, Stuart JR, Raymond JD, Niemi JB, Simmons MJ (2005) Impairment of cytotype regulation of P-element activity in Drosophila melanogaster by mutations in the Su(var) 205 gene. Genetics 171:583–595.

    PubMed  Google Scholar 

  • Hall IM, Noma K, Grewal SI (2003) RNA interference machinery regulates chromosome dynamics during mitosis and meiosis in fission yeast. Proc Natl Acad Sci USA 100:193–198.

    PubMed  Google Scholar 

  • Hamilton A, Voinnet O, Chappell L, Baulcombe D (2002) Two classes of short interfering RNA in RNA silencing. EMBO J 21:4671–4679.

    PubMed  Google Scholar 

  • Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027.

    PubMed  Google Scholar 

  • Hannon GJ, Conklin DS (2004) RNA interference by short hairpin RNAs expressed in vertebrate cells. Methods Mol Biol 257:255–266.

    PubMed  Google Scholar 

  • Haussecker D, Proudfoot NJ (2005) Dicer-dependent turnover of intergenic transcripts from the human beta-globin gene cluster. Mol Cell Biol 25:9724–9733.

    PubMed  Google Scholar 

  • Haynes KA, Caudy AA, Collins L, Elgin SCR (2006) Element 1360 and RNAi components contribute to HP1-dependent silencing of a pericentric reporter. Curr Biol 16:2222–2227.

    PubMed  Google Scholar 

  • Huertas D, Cortes A, Casanova J, Azorin F (2004) Drosophila DDP1, a multi-KH-domain protein, contributes to centromeric silencing and chromosome segregation. Curr Biol 14:1611–1620.

    PubMed  Google Scholar 

  • Ishizuka A, Siomi MC, Siomi H (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev 16:2497–2508.

    PubMed  Google Scholar 

  • Jacque JM, Triques K, Stevenson M (2002) Modulation of HIV-1 replication by RNA interference. Nature 418:435–438.

    PubMed  Google Scholar 

  • Jakymiw A, Lian S, Eystathioy T, Li S, Satoh M, Hamel JC, Fritzler MJ, Chan EK (2005) Disruption of GW bodies impairs mammalian RNA interference. Nat Cell Biol 7:1167–1174.

    Google Scholar 

  • Jensen S, Gassama MP, Heidmann T (1999a) Cosuppression of I transposon activity in Drosophila by I-containing sense and antisense transgenes. Genetics 153:1767–1774.

    PubMed  Google Scholar 

  • Jensen S, Gassama MP, Heidmann T (1999b) Taming of transposable elements by homology-dependent gene silencing. Nat Genet 21:209–212.

    PubMed  Google Scholar 

  • Jeong Br BR, Wu-Scharf D, Zhang C, Cerutti H (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci USA 99:1076–1081.

    PubMed  Google Scholar 

  • Kalmykova AI, Klenov MS, Gvozdev VA (2005) Argonaute protein PIWI controls mobilization of retrotransposons in the Drosophila male germline. Nucleic Acids Res 33:2052–2059.

    PubMed  Google Scholar 

  • Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S, Frise E, Wheeler DA, Lewis SE, Rubin GM, Ashburner M, Celniker SE (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol 3:RESEARCH0084.

    PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501.

    PubMed  Google Scholar 

  • Karpen GH, Spradling AC (1992) Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. Genetics 132:737–753.

    PubMed  Google Scholar 

  • Kassis JA, VanSickle EP, Sensabaugh SM (1991) A fragment of engrailed regulatory DNA can mediate transvection of the white gene in Drosophila. Genetics 128:751–761.

    PubMed  Google Scholar 

  • Kato H, Goto DB, Martienssen RA, Urano T, Furukawa K, Murakami Y (2005) RNA polymerase II is required for RNAi-dependent heterochromatin assembly. Science 309:467–469.

    PubMed  Google Scholar 

  • Kelley RL, Kuroda MI (2003) The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex. Genetics 164:565–574.

    PubMed  Google Scholar 

  • Kelley RL, Meller VH, Gordadze PR, Roman G, Davis RL, Kuroda MI (1999) Epigenetic spreading of the Drosophila dosage compensation complex from roX RNA genes into flanking chromatin. Cell 98:513–522.

    PubMed  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898.

    PubMed  Google Scholar 

  • Kennerdell JR, Yamaguchi S, Carthew RW (2002) RNAi is activated during Drosophila oocyte maturation in a manner dependent on aubergine and spindle-E. Genes Dev 16:1884–1889.

    PubMed  Google Scholar 

  • Klenov MS, Lavrov SA, Stolyarenko AD, Ryazansky SS, Aravin AA, Tuschl T, Gvozdev VA (2007) Repeat-associated short interfering RNAs are involved in chromatin silencing of retrotransposons in the Drosophila melanogaster germline. Nucleic Acids Res Aug 15 [Epub ahead of print].

    Google Scholar 

  • Kraynack BA, Baker BF (2005) Small interfering RNAs containing full 2K-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. RNA 12:163–176.

    PubMed  Google Scholar 

  • Kruse C, Grunweller A, Willkomm DK, Pfeiffer T, Hartmann RK, Muller PK (1998) tRNA is entrapped in similar, but distinct, nuclear and cytoplasmic ribonucleoprotein complexes, both of which contain vigilin and elongation factor 1 alpha. Biochem J 329:615–621.

    PubMed  Google Scholar 

  • Kruse C, Willkomm DK, Grunweller A, Vollbrandt T, Sommer S, Busch S, Pfeiffer T, Brinkmann J, Hartmann RK, Muller PK (2000) Export and transport of tRNA are coupled to a multi-protein complex. Biochem J 346:107–115.

    PubMed  Google Scholar 

  • Lee YS, Nakahara K, Pham JW, Kim K, He Z, Sontheimer EJ, Carthew RW (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69–81.

    PubMed  Google Scholar 

  • Lei EP, Corces VG (2006) RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat Genet 38:936–941.

    PubMed  Google Scholar 

  • Lemaitre B, Ronsseray S, Coen D (1993) Maternal repression of the P element promoter in the germline of Drosophila melanogaster: a model for the P cytotype. Genetics 135:149–160.

    PubMed  Google Scholar 

  • Li AM, Watson A, Fridovich-Keil JL (2003) Scp160p associates with specific mRNAs in yeast. Nucleic Acids Res 31:1830–1837.

    PubMed  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321.

    PubMed  Google Scholar 

  • Lipardi C, Wei Q, Paterson BM (2001) RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107:297–307.

    PubMed  Google Scholar 

  • Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441.

    PubMed  Google Scholar 

  • Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ (2005a) A role for the P-body component GW182 in microRNA function. Nat Cell Biol 7:1161–1166.

    Google Scholar 

  • Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R (2005b) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723.

    PubMed  Google Scholar 

  • Liu LP, Ni JQ, Shi YD, Oakeley EJ, Sun FL (2005) Sex-specific role of Drosophila melanogaster HP1 in regulating chromatin structure and gene transcription. Nat Genet 37:1361–1366.

    PubMed  Google Scholar 

  • Liu Q, Rand TA, Kalidas S, Du F, Kim HE, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925.

    PubMed  Google Scholar 

  • Liu X, Jiang F, Kalidas S, Smith D, Liu Q (2006) Dicer-2 and R2D2 coordinately bind siRNA to promote assembly of the siRISC complexes. RNA 12:1514–1520.

    PubMed  Google Scholar 

  • Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619.

    PubMed  Google Scholar 

  • Lozovskaya ER, Scheinker VS, Evgenev MB (1990) A hybrid dysgeneis syndrome in Drosophila virilis. Genetics 126:619–623.

    PubMed  Google Scholar 

  • Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5M-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670.

    PubMed  Google Scholar 

  • Malinsky S, Bucheton A, Busseau I (2000) New insights on homology-dependent silencing of I factor activity by transgenes containing ORF1 in Drosophila melanogaster. Genetics 156:1147–1155.

    PubMed  Google Scholar 

  • Matranga C, Tomari Y, Shin C, Bartel DP, Zamore PD (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620.

    PubMed  Google Scholar 

  • Matzke MA, Primig M, Trnovsky J, Matzke AJM (1989) Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J 8:643–649.

    PubMed  Google Scholar 

  • McLean C, Bucheton A, Finnegan DJ (1993) The 5M untranslated region of the I factor, a long interspersed nuclear element-like retrotransposon of Drosophila melanogaster, contains an internal promoter and sequences that regulate expression. Mol Cell Biol 13:1042–1050.

    PubMed  Google Scholar 

  • Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197.

    PubMed  Google Scholar 

  • Mette MF, van der Winden J, Matzke M, Matzke AJ (2002) Short RNAs can identify new candidate transposable element families in Arabidopsis. Plant Physiol 130:6–9.

    PubMed  Google Scholar 

  • Miyoshi K, Tsukumo H, Nagami T, Siomi H, Siomi MC (2005) Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev 19:2837–2848.

    PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgenson R (1990) Introduction of a chimeric chalcone synthase gene in Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289.

    PubMed  Google Scholar 

  • O’Hare K, Driver A, McGrath S, Johnson-Schiltz DM (1992) Distribution and structure of cloned P elements from the Drosophila melanogaster P strain pi2. Genet Res 60:33–41.

    PubMed  Google Scholar 

  • Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18:1850–1861.

    PubMed  Google Scholar 

  • Okamura K, Ishizuka A, Siomi H, Siomi MC (2004) Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev 18:1655–1666.

    PubMed  Google Scholar 

  • Paddison PJ, Caudy AA, Hannon GJ (2002) Stable suppression of gene expression by RNAi in mammalian cells. Proc Natl Acad Sci USA 99:1443–1448.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (1997) Cosuppression in Drosophila: gene silencing of Alcohol dehydrogenase by white-Adh transgenes is Polycomb dependent. Cell 90:479–490.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (1999) Cosuppression of nonhomologous transgenes in Drosophila involves mutually related endogenous sequences. Cell 99:35–46.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and post-transcriptional transgene silencing in Drosophila. Mol Cell 9:315–327.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Birchler JA (2004a) Interrelationship of RNA interference and transcriptional gene silencing in Drosophila. Cold Spring Harb Symp Quant Biol 69:433–438.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Leibovitch BA, Gandhi SG, Rao M, Bhadra U, Birchler JA, Elgin SC (2004b) Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science 303:669–672.

    PubMed  Google Scholar 

  • Pal-Bhadra M, Bhadra U, Kundu J, Birchler JA (2005) Gene expression analysis of the function of the MSL complex in Drosophila. Genetics 169:2061–2074.

    Google Scholar 

  • Pane A, Wehr K, Schupbach T (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 12:851–862.

    PubMed  Google Scholar 

  • Parker JS, Roe SM, Barford D (2005) Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434:663–666.

    PubMed  Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35.

    PubMed  Google Scholar 

  • Pham JW, Sontheimer EJ (2005) Molecular requirements for RNA-induced silencing complex assembly in the Drosophila RNA interference pathway. J Biol Chem 280:39278–39283.

    PubMed  Google Scholar 

  • Pham JW, Pellino JL, Lee YS, Carthew RW, Sontheimer EJ (2004) A Dicer-2-dependent 80s complex cleaves targeted mRNAs during RNAi in Drosophila. Cell 117:83–94.

    PubMed  Google Scholar 

  • Picard G (1976) Non-Mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83:107–123.

    PubMed  Google Scholar 

  • Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G (2004) A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 23:3516–3526.

    PubMed  Google Scholar 

  • Rabinow L, Nguyen-Huynh A, Birchler JA (1991) A trans-acting regulatory gene that inversely affects the expression of the white, brown and scarlet loci in Drosophila melanogaster. Genetics 129:463–480.

    PubMed  Google Scholar 

  • Rabinow L, Chiang SL, Birchler JA (1993) Mutations at the Darkener of apricot locus modulate transcript levels of copia and copia-induced mutations in Drosophila melanogaster. Genetics 134:1175–1185.

    PubMed  Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831.

    PubMed  Google Scholar 

  • Reiss D, Josse T, Anxolabehere D, Ronsseray S (2004) Aubergine mutations in Drosophila melanogaster impair P cytotype determination by telomeric P elements inserted in heterochromatin. Mol Genet Genomics 272:336–343.

    PubMed  Google Scholar 

  • Rio DC, Laski FA, Rubin GM (1986) Identification and immunochemical analysis of biologically active Drosophila P element transposase. Cell 44:21–32.

    PubMed  Google Scholar 

  • Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, Joshua-Tor L (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12:340–349.

    PubMed  Google Scholar 

  • Robin S, Chambeyron S, Bucheton A, Busseau I (2003) Gene silencing triggered by non-LTR retrotransposons in the female germline of Drosophila melanogaster. Genetics 164:521–531.

    PubMed  Google Scholar 

  • Roche SE, Schiff M, Rio DC (1995) P-element repressor autoregulation involves germ-line transcriptional repression and reduction of third intron splicing. Genes Dev 9:1278–1288.

    PubMed  Google Scholar 

  • Ronsseray S, Lehmann M, Anxolabehere D (1991) The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129:501–512.

    PubMed  Google Scholar 

  • Ronsseray S, Lehmann M, Nouaud D, Anxolabehere D (1996) The regulatory properties of autonomous subtelomeric P elements are sensitive to a suppressor of variegation in Drosophila melanogaster. Genetics 143:1663–1674.

    PubMed  Google Scholar 

  • Ronsseray S, Marin L, Lehmann M, Anxolabehere D (1998) Repression of hybrid dysgenesis in Drosophila melanogaster by combinations of telomeric P-element reporters and naturally occurring P elements. Genetics 149:1857–1866.

    PubMed  Google Scholar 

  • Ronsseray S, Josse T, Boivin A, Anxolabehere D (2003) Telomeric transgenes and trans-silencing in Drosophila. Genetica 117:327–335.

    PubMed  Google Scholar 

  • Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29:987–994.

    PubMed  Google Scholar 

  • Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, Nagami T, Siomi H, Siomi MC (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222.

    PubMed  Google Scholar 

  • Savitsky M, Kwon D, Georgiev P, Kalmykova A, Gvozdev V (2006) Telomere elongation is under the control of the RNAi-based mechanism in the Drosophila germline. Genes Dev 20:345–354.

    PubMed  Google Scholar 

  • Scadden AD (2005) The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its cleavage. Nat Struct Mol Biol 12:489–496.

    PubMed  Google Scholar 

  • Scadden AD, Smith CW (2001) RNAi is antagonized by A→I hyper-editing. EMBO Rep 2:1107–1111.

    PubMed  Google Scholar 

  • Schramke V, Sheedy DM, Denli AM, Bonila C, Ekwall K, Hannon GJ, Allshire RC (2005) RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature 435:1275–1279.

    PubMed  Google Scholar 

  • Schwarz DS, Hutvagner G, Haley B, Zamore PD (2002) Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10:537–548.

    PubMed  Google Scholar 

  • Schwarz DS, Tomari Y, Zamore PD (2004) The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr Biol 14:787–791.

    PubMed  Google Scholar 

  • Sijen T, Plasterk RH (2003) Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 426:310–314.

    PubMed  Google Scholar 

  • Simmons MJ, Raymond JD, Grimes CD, Belinco C, Haake BC, Jordan M, Lund C, Ojala TA, Papermaster D (1996) Repression of hybrid dysgenesis in Drosophila melanogaster by heat-shock-inducible sense and antisense P-element constructs. Genetics 144:1529–1544.

    PubMed  Google Scholar 

  • Simmons MJ, Raymond JD, Niemi JB, Stuart JR, Merriman PJ (2004) The P cytotype in Drosophila melanogaster: a maternally transmitted regulatory state of the germ line associated with telomeric P elements. Genetics 166:243–254.

    PubMed  Google Scholar 

  • Siomi MC, Tsukumo H, Ishizuka A, Nagami T, Siomi H (2005) A potential link between transgene silencing and poly(A) tails. RNA 11:1004–1011.

    PubMed  Google Scholar 

  • Song K, Jung Y, Jung D, Lee I (2001) Human Ku70 interacts with heterochromatin protein 1alpha. J Biol Chem 276:8321–8327.

    PubMed  Google Scholar 

  • Song YH, Mirey G, Betson M, Haber DA, Settleman J (2004) The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr Biol 14:1354–1359.

    PubMed  Google Scholar 

  • Sontheimer EJ (2005) Assembly and function of RNA silencing complexes. Nat Rev Mol Cell Biol 6:127–138.

    PubMed  Google Scholar 

  • Sontheimer EJ, Carthew RW (2004) Molecular biology. Argonaute journeys into the heart of RISC. Science 305:1409–1410.

    PubMed  Google Scholar 

  • Spierer A, Seum C, Delattre M, Spierer P (2005) Loss of the modifiers of variegation Su(var) 3–7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J Cell Sci 118:5047–5057.

    PubMed  Google Scholar 

  • Stuart JR, Haley KJ, Swedzinski D, Lockner S, Kocian PE, Merriman PJ, Simmons MJ (2002) Telomeric P elements associated with cytotype regulation of the P transposon family in Drosophila melanogaster. Genetics 162:1641–1654.

    PubMed  Google Scholar 

  • Sun FL, Haynes K, Simpson CL, Lee SD, Collins L, Wuller J, Eissenberg JC, Elgin SCR (2004) cis-Acting determinants of heterochromatin formation on Drosophila melanogaster chromosome four. Mol Cell Biol 24:8210–8220.

    PubMed  Google Scholar 

  • Tahbaz N, Kolb FA, Zhang H, Jaronczyk K, Filipowicz W, Hobman TC (2004) Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep 5:189–194.

    PubMed  Google Scholar 

  • Takeda S, Tadele Z, Hofmann I, Probst AV, Angelis KJ, Kaya H, Araki T, Mengiste T, Mittelsten Scheid O, Shibahara K, Scheel D, Paszkowski J (2004) BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev 18:782–793.

    PubMed  Google Scholar 

  • Thacker J, Zdzienicka MZ (2004) The XRCC genes: expanding roles in DNA double-strand break repair. DNA Repair (Amst) 3:1081–1090.

    Google Scholar 

  • Tomari Y, Du T, Haley B, Schwarz DS, Bennett R, Cook HA, Koppetsch BS, Theurkauf WE, Zamore PD (2004a) RISC assembly defects in the Drosophila RNAi mutant armitage. Cell 116:831–841.

    PubMed  Google Scholar 

  • Tomari Y, Matranga C, Haley B, Martinez N, Zamore PD (2004b) A protein sensor for siRNA asymmetry. Science 306:1377–1380.

    PubMed  Google Scholar 

  • Tonkin LA, Bass BL (2003) Mutations in RNAi rescue aberrant chemotaxis of ADAR mutants. Science 302:1725.

    PubMed  Google Scholar 

  • Tonkin LA, Saccomanno L, Morse DP, Brodigan T, Krause M, Bass BL (2002) RNA editing by ADARs is important for normal behavior in Caenorhabditis elegans. EMBO J 21:6025–6035.

    PubMed  Google Scholar 

  • Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119.

    PubMed  Google Scholar 

  • Tulin AV, Kogan GL, Filipp D, Balakireva MD, Gvozdev VA (1997) Heterochromatic Stellate gene cluster in Drosophila melanogaster: structure and molecular evolution. Genetics 146:253–262.

    PubMed  Google Scholar 

  • Usakin L, Abad J, Vagin VV, de Pablos B, Villasante A, Gvozdov VA (2007) Transcription of the 1.688 satellite DNA family is under the control of RNA interference machinery in Drosophila melanogaster ovaries. Genetics 176:1343–1349.

    PubMed  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621.

    PubMed  Google Scholar 

  • Vagin VV, Klenov MS, Kalmykova AI, Stolyarenko AD, Kotelnikov RN, Gvozdev VA (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster. RNA Biol 1:54–58.

    PubMed  Google Scholar 

  • Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, Zamore P (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324.

    PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in Petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299.

    PubMed  Google Scholar 

  • Verdel A, Jia S, Gerber S, Sugiyama T, Gygi S, Grewal SI, Moazed D (2004) RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676.

    PubMed  Google Scholar 

  • Vermeulen A, Behlen L, Reynolds A, Wolfson A, Marshall WS, Karpilow J, Khvorova A (2005) The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11:674–682.

    PubMed  Google Scholar 

  • Volpe T, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146.

    PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837.

    PubMed  Google Scholar 

  • Wang Q, Zhang Z, Blackwell K, Carmichael GG (2005) Vigilins bind to promiscuously A-to-I-edited RNAs and are involved in the formation of heterochromatin. Curr Biol 15:384–391.

    PubMed  Google Scholar 

  • Wang XH, Aliyari R, Li WX, Li HW, Kim K, Carthew R, Atkinson P, Ding SW (2006) RNA interference directs innate immunity against viruses in adult Drosophila. Science 312:452–454.

    PubMed  Google Scholar 

  • Wang Y, Zhang W, Jin Y, Johansen J, Johansen KM (2001) The JIL-1 tandem kinase mediates histone H3 phosphorylation and is required for maintenance of chromatin structure in Drosophila. Cell 105:433–443.

    PubMed  Google Scholar 

  • Williams RW, Rubin GM (2002) Argonaute1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci USA 99:6889–6894.

    PubMed  Google Scholar 

  • Yang W, Wan, Q, Howell KL, Lee JT, Cho DS, Murray JM, Nishikurg K (2005) ADAR1 RNA deaminase limits short interfering RNA efficacy in mammalian cells. J Biol Chem 280:3946–3953.

    PubMed  Google Scholar 

  • Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J 21:5875–5885.

    PubMed  Google Scholar 

  • Zhang H, Kolb FA, Jaskiewicz L, Westhof E, Filipowicz W (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118:57–68.

    PubMed  Google Scholar 

  • Zhang W, Deng H, Bao X, Lerach S, Girton J, Johansen J, Johansen KM (2006) The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. Development 133:229–235.

    PubMed  Google Scholar 

  • Zhang Z, Carmichael GG (2001) The fate of dsRNA in the nucleus: a p54nrb-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell 106:465–475.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kavi, H.H., Fernandez, H., Xie, W., Birchler, J.A. (2008). Genetics and Biochemistry of RNAi in Drosophila . In: Paddison, P.J., Vogt, P.K. (eds) RNA Interference. Current Topics in Microbiology and Immunology, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75157-1_3

Download citation

Publish with us

Policies and ethics