Skip to main content

Ocean Data Assimilation

  • Chapter
  • First Online:
Data Assimilation

Abstract

The oceans form a key component of the Earth’s weather and climate system. As well as being important to forecast in their own right to facilitate human activities, such as shipping, fishing, drilling for oil and coastline management and leisure, it is thought that an active ocean model is necessary for all atmospheric predictions on time-scales of a month and longer (Mansfield 1986). Another great challenge for oceanographers is to understand how and where the oceans are absorbing half of all the anthropogenic CO2 being released (Battle et al. 2000), and whether this state of affairs will continue indefinitely. Ocean modelling and ocean data assimilation can play an important role in understanding the changing climate through the reanalysis of historical ocean data. We will return to some of these applications later in the chapter. It is not the intention here to cover all aspects of ocean data assimilation; in particular much of the theory is generic and can be found elsewhere in this book or in many good reviews (e.g. Bennett 1992; Wunsch 1996; Haines 2003a, b, c; see chapters in Part I, Theory). Instead we focus on particular applications and problems related to ocean data assimilation and try to give a perspective on some of the current and future challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASOF, Arctic-Subarctic Ocean Fluxes, 2008. Dickson, R.R., J. Meincke and P. Rhines (eds.), Springer, 736pp.

    Google Scholar 

  • Awaji, T., N. Sugiura, T. Mochizuki, S. Masuda, T. Miyama, H. Igarashi, Y. Ishikawa, K. Horiuchi, Y. Sasaki, Y. Hiyoshi and N. Komori, 2002. Research development of 4-dimensional data assimilation system using a coupled climate model and construction of reanalysis datasets for initialization. In Chapter 4 Research Revolution 2002: Research Project for Sustainable Coexistence of Human, Nature, and the Earth. Annual Report of the Earth Simulator Center April 2006–March 2007.

    Google Scholar 

  • Balmaseda, M.A., D. Dee, A. Vidard and D.L.T. Anderson, 2007. A multivariate treatment of bias for sequential data assimilation: Application to the tropical oceans. Q. J. R. Meteorol. Soc., 133, 167–179.

    Article  Google Scholar 

  • Balmaseda, M.A., G.C. Smith, K. Haines, D. Anderson, T.N. Palmer and A. Vidard, 2007. Historical reconstruction of the Atlantic meridional overturning circulation from ECMWF operational ocean reanalysis. Geophys. Res. Lett., 34, L23615, doi:10.1029/2007GL031645.

    Google Scholar 

  • Barnston, A.G., Y. He and M.H. Glantz, 1999. Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteorol. Soc., 80, 217–243.

    Article  Google Scholar 

  • Battle, M., M.L. Bender, P.P. Tans, J.W.C. White, J.T. Ellis, T. Conway and R.J. Francey, 2000. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science, 287, 2467–2470.

    Article  Google Scholar 

  • Bell, M.J., M.J. Martin and N.K. Nichols, 2004. Assimilation of data into an ocean model with systematic errors near the equator. Q. J. R. Meteorol. Soc., 130, 873–893.

    Article  Google Scholar 

  • Bennett, A., 1992. Inverse Methods in Physical Oceanography. Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, UK, 346pp.

    Book  Google Scholar 

  • Bingham R.J., K. Haines and C.W. Hughes, 2008. Calculating the ocean’s mean dynamic topography from a mean sea surface and a Geoid. J. Atmos. Ocean Tech., 25, 1808–1872.

    Article  Google Scholar 

  • Blumberg, A.F. and G.L. Mellor, 1987. A description of a three-dimensional coastal ocean circulation model. In Three-Dimensional Coastal Ocean Models, Heaps, N. (ed.), American Geophysical Union, Washington, DC, 208pp.

    Google Scholar 

  • Bryan, K., 1963. A numerical investigation of a nonlinear model of the wind-driven ocean. J. Atmos. Sci., 20, 594–606.

    Article  Google Scholar 

  • Chepurin G.A., J.A. Carton and D. Dee, 2005. Forecast model bias correction in ocean data assimilation. Mon. Weather Rev., 133, 1328–1342.

    Article  Google Scholar 

  • Conkwright, M.E., R.A. Locarnini, H.E. Garcia, T.D. O’Brien, T.P. Boyer, C. Stephens and J.I. Antonov, 2002. World Ocean Atlas 2001: Objective Analyses, Data Statistics and Figures, CD-Rom Documentation, National Oceanographic Data Center, Silver Springs, MD, 17pp.

    Google Scholar 

  • Cooper, M.C. and K. Haines, 1996. Data assimilation with water property conservation. J. Geophys. Res., 101, 1059–1077.

    Article  Google Scholar 

  • Cunningham, S.A., T. Kanzow, D. Rayner, et al., 2007. Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. Science, 317, 935–938.

    Article  Google Scholar 

  • Dee, D.P., 2005. Bias and data assimilation. Q. J. R. Meteorol. Soc., 613, 3323–3343.

    Article  Google Scholar 

  • Dee, D. and A. da Silva, 1998. Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. Soc., 124, 269–295.

    Article  Google Scholar 

  • De Mey, P. and A. Robinson, 1987. Assimilation of altimeter eddy fields in a limited area quasi-geostrophic model. J. Phys. Oceanogr., 17, 2280–2293.

    Article  Google Scholar 

  • Derber, J. and F. Bouttier, 1999. A reformulation of the background error covariance in the ECMWF global data assimilation system. Tellus, 51A, 195–221.

    Article  Google Scholar 

  • Drecourt, J., K. Haines and M. Martin, 2006. Influence of systematic error correction on the temporal behavior of an ocean model. J. Geophys. Res., 111, C11020, doi:10.1029/2006JC003513.

    Google Scholar 

  • Drinkwater M.R., R. Haagmans, D. Muzi, A. Popescu, R. Floberghagen, M. Kern and M. Fehringer, 2007. Proceedings of 3rd International GOCE User Workshop, 6–8 November, 2006, Frascati, Italy, ESA SP-627.

    Google Scholar 

  • Durand, F., L. Gourdeau, T. Delcroix and J. Verron, 2002. Assimilation of sea surface salinity in a tropical Oceanic General Circulation Model (OGCM): A twin experiment approach. J. Geophys. Res., 107, 8004, doi: 10.1029/2001JC000849.

    Article  Google Scholar 

  • Eden, C. and Oschlies, A., 2006. Adiabatic reduction of circulation-related CO2 air-sea flux biases in a North Atlantic carbon-cycle model. Global Biogeochem. Cycles, 20, GB2008, doi: 10.1029/2005GB002521.

    Google Scholar 

  • Eymard, L., S. Planton, P. Durand, et al., 1996. Study of the air-sea interactions at the meso-scale: The SEMAPHORE experiment. Ann. Geophys., 14, 968–1015.

    Article  Google Scholar 

  • Ezer, T. and G.L. Mellor, 1994. Continuous assimilation of GEOSAT altimeter data into a three-dimensional primitive equation Gulf Stream model. J. Phys. Oceanogr., 24, 832–847.

    Article  Google Scholar 

  • Fox, A.D. and K. Haines, 2003. Interpretation of water mass transformations diagnosed from data assimilation. J. Phys. Oceanogr., 33, 485–498.

    Article  Google Scholar 

  • Fox, A.D., K. Haines, B. De Cuevas and D.J. Webb, 2000. Altimeter assimilation in the OCCAM global model, Part II: TOPEX/POSEIDON and ERS1 data. J. Marine Sys., 26, 323–347.

    Article  Google Scholar 

  • Gavart, M. and P. De Mey, 1997. Isopycnal EOFs in the Azores current region: A statistical tool for dynamical analysis and data assimilation. J. Phys. Oceanogr., 27, 2146–2157.

    Article  Google Scholar 

  • Gill, A.E., 1982. Atmosphere-Ocean Dynamics, Academic Press, New York, 662pp.

    Google Scholar 

  • Goddard, L. and S.G.H. Philander, 2000. The energetics of El Niño and La Niña. J. Climate, 13,1496–1516.

    Article  Google Scholar 

  • Haines, K., 1991. A direct method for assimilating sea surface height data into ocean models with adjustments to the deep circulation. J. Phys. Oceanogr., 21, 843–868.

    Article  Google Scholar 

  • Haines, K., 1994. Dynamics and data assimilation in oceanography. NATO Series I, 19, 1–32.

    Google Scholar 

  • Haines, K., 2003a. Uses of ocean data assimilation and ocean state estimation. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 289–296, 378pp.

    Chapter  Google Scholar 

  • Haines, K., 2003b. Altimeter covariances and errors treatment. In Data Assimilation for the Earth System, NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 297–308, 378pp.

    Chapter  Google Scholar 

  • Haines, K., 2003c. Assimilation of hydrographic data and analysis of model bias. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz, Kluwer Academic Publishers, Dordecht, The Netherlands, pp 309–320, 378pp.

    Chapter  Google Scholar 

  • Haines, K., J. Blower, J-P. Drecourt, C. Liu, A. Vidard, I. Astin and X. Zhou., 2006. Salinity assimilation using S(T): Covariance relationships. Mon. Weather Rev., 134, 759–771.

    Article  Google Scholar 

  • Hernandez, F. and P. Shaeffer, 2000. Altimetric mean sea surfaces and gravity anomaly maps intercomparisons. AVI-NT-011-5242-CLS 48pp, CLS, Ramonville St. Agnes.

    Google Scholar 

  • Holland, W.R., 1978. The role of mesoscale eddies in the general circulation of the ocean – numerical experiments using a wind driven quasi-geostrophic model. J. Phys. Oceanogr., 8, 363–392.

    Article  Google Scholar 

  • Hughes, C. and R. Bingham, 2008. An oceanographer's guide to GOCE and the Geoid. Ocean Sci., 4, 15–29.

    Article  Google Scholar 

  • Hunegnaw, A., F. Siegismund, R. Hipkin and K.A. Mork (2009), Absolute flow field estimation for the Nordic seas from combined gravimetric, altimetric, and in situ data. J. Geophys. Res., 114, C02022, doi: 10.1029/2008JC004797.

    Google Scholar 

  • Hurlburt H.E., E.P. Chassignet, J.A. Cummings, A.B. Kara, E.J. Metzger, J.F. Shriver, O.M. Smedstad, A.J. Wallcraft and C.N. Barron, 2008. Eddy-resolving global ocean prediction. In Eddy-Resolving Ocean Modeling, AGU Monograph Series, Hecht, M. and H. Hasumi (eds.), American Geophysical Union, Washington, DC, pp 353–382.

    Chapter  Google Scholar 

  • Hurlburt, H.E., D.N. Fox and E.J. Metzger, 1990. Statistical inference of weakly correlated subthermocline fields from satellite altimeter data. J. Geophys. Res., 95, 11375–11409.

    Article  Google Scholar 

  • IPCC, 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Available from http://www.ipcc.ch.

  • Isern-Fontanet, J., G. Lapeyre, P. Klein, B. Chapron and M.W. Hecht (2008), Three-dimensional reconstruction of oceanic mesoscale currents from surface information. J. Geophys. Res., 113, C09005, doi: 10.1029/2007JC004692.

    Google Scholar 

  • Ishii, M., N. Hasegawa, S. Sugimoto, I. Ishikawa, I. Yoshikawa and M. Kimoto, 1998. An El Niño prediction experiment with a JMA ocean-atmosphere coupled model, “Kookai”. Proceedings of WMO International Workshop on Dynamical Extended Range Forecasting, Toulouse, France, 17–21 November 1997, WMO/TD-No. 881, pp 105–108.

    Google Scholar 

  • Killworth, P.D., D.E. Dietrich, Ch. Le Provost, A. Oschlies and J. Willebrand, 2001. Assimilation of altimetric data into an eddy-permitting model of the North Atlantic. Prog. Oceanogr., 48, 313–335.

    Article  Google Scholar 

  • Koblinsky, C.J. and N.R. Smith (eds.), 2001. Observing the Oceans in the 21st Century, GODAE Project Office, Bureau of Meteorology, Melbourne, Australia, 285–306. ISBN-0642-70618-2.

    Google Scholar 

  • Komen, G.J., L. Cavaleri, M. Donelan, K. Hasselmann and P.A.E.M. Janssen, 1994. Dynamics and Modelling of Ocean Waves, Cambridge University Press, Cambridge, UK, 532pp.

    Book  Google Scholar 

  • Lea, D.J., M.R. Allen and T.W.N. Haine, 2000. Sensitivity analysis of the climate of a chaotic system. Tellus, 52A, 523–532.

    Article  Google Scholar 

  • Lea, D.J., J-P. Drecourt, K. Haines and M. Martin, 2008. Ocean altimeter assimilation with observational and model bias correction. Q. J. R. Meteorol. Soc., 134, 1761–1774.

    Article  Google Scholar 

  • Mansfield, D.A., 1986. The skill of dynamical long-range forecasts, including the effect of SST anomalies. Q. J. R. Meteorol. Soc., 112, 1145–1176.

    Article  Google Scholar 

  • Marshall, J.C., 1984. Eddy-mean flow interaction in a barotropic ocean model. Q. J. R. Meteorol. Soc., 110, 573–590.

    Article  Google Scholar 

  • Mellor, G.L., 1996. Users Guide for a Three-Dimensional, Primitive Equation, Numerical Ocean Model, Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, 38pp.

    Google Scholar 

  • Mellor G.L. and T. Ezer, 1991. A Gulf stream model and an altimetry assimilation scheme. J. Geophys. Res., 96, 8779–8795.

    Article  Google Scholar 

  • Merchant C.J., D. Llewellyn-Jones, R.W. Saunders, N.A. Rayner, E.C. Kent, C.P. Old, D. Berry, A.R. Birks, T. Blackmore, G.K. Corlett, O. Embury, V.L. Jay, J. Kennedy, C.T. Mutlow, T.J. Nightingale, A.G. O’Carroll, M.J. Pritchard, J.J. Remedios and S. Tett, 2008. Deriving a sea surface temperature record suitable for climate change research from the along-track scanning radiometers. Adv. Space Res., 41, 1–11, doi:10.1016/j.asr.2007.07.041.

    Article  Google Scholar 

  • Mochizuki, T., H. Igarashi, N. Sugiura, S. Masuda, N. Ishida and T. Awaji, 2007. Improved coupled GCM climatologies for summer monsoon onset studies over Southeast Asia. Geophys. Res. Lett., 34, L01706, doi:10.1029/2006GL027861.

    Google Scholar 

  • Niiler P.P., N.A. Maximenko and J.C. McWilliams, 2003. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations. Geophys. Res. Lett., 30, 2164–2167.

    Article  Google Scholar 

  • Oschlies, A. and V. Garcon, 1998. Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean. Nature, 394, 266–269.

    Article  Google Scholar 

  • Oschlies, A. and J. Willebrand, 1996. Assimilation of Geosat altimeter data into an eddy-resolving primitive equation model of the North Atlantic Ocean. J. Geophys. Res., 101, 14175–14190.

    Article  Google Scholar 

  • Palmer, J.R. and I.J. Totterdell, 2001. Production and export in a global ecosystem model. Deep Sea Res. I, 48, 1169–1198.

    Article  Google Scholar 

  • Palmer, T.N., A. Alessandri, U. Andersen, P. Cantelaube, M. Davey, P. Délécluse, M. Déqué, E. Díez, F.J. Doblas-Reyes, H. Feddersen, R. Graham, S. Gualdi, J.-F. Guérémy, R. Hagedorn, M. Hoshen, N. Keenlyside, M. Latif, A. Lazar, E. Maisonnave, V. Marletto, A.P. Morse, B. Orfila, P. Rogel, J.-M. Terres and M.C. Thomson, 2004. Development of a European multi-model ensemble system for seasonal to inter-annual prediction (DEMETER). Bull. Amer. Meteorol. Soc., 85, 853–872.

    Article  Google Scholar 

  • Philander, S.G., 2002. A review of tropical ocean-atmosphere interactions. Tellus A, 51, 71–90.

    Google Scholar 

  • Piggott M.D., C.C. Pain, G.J. Gorman, D.P. Marshall and P.D. Killworth, 2008. Unstructured adaptive meshes for ocean modeling. In Eddy-Resolving Ocean Modeling, Hecht, M. and H. Hasumi (eds.), American Geophysical Union, Washington, DC, pp 383–408.

    Chapter  Google Scholar 

  • Reynolds, R.W. and T.M. Smith, 1994. Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.

    Article  Google Scholar 

  • Ricci, S., A.T. Weaver, J. Vialard and P. Rogel, 2005. Incorporating temperature-salinity constraints in the background error covariance of variational ocean data assimilation. Mon. Weather Rev., 133, 317–338.

    Article  Google Scholar 

  • Rio, M.-H. and F. Hernandez, 2004. High-frequency response of wind-driven currents measured by drifting buoys and altimetry over the world ocean. J. Geophys. Res., 108, 3283, doi:10.1029/2002JC001655.

    Article  Google Scholar 

  • Segschneider J., D.L.T. Anderson, J. Vialard, M. Balmaseda, T.N. Stockdale, A. Troccoli and K. Haines, 2001. Initialization of seasonal forecasts assimilating sea level and temperature observations. J. Climate, 14, 4292–4307.

    Article  Google Scholar 

  • Smith, D.M., S. Cusack, A.W. Colman, C.K. Folland, G.R. Harris and J.M. Murphy, 2007. Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796–799.

    Article  Google Scholar 

  • Smith, G. and K. Haines, 2009. Evaluation of the S(T) assimilation method with the Argo dataset. Q. J. R. Meteorol. Soc., 135, 739–756.

    Article  Google Scholar 

  • Stammer, D., K. Ueyoshi, A. Köhl, W.G. Large, S.A. Josey and C. Wunsch, 2004. Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation, J. Geophys. Res., 109, C05023, doi:10.1029/2003JC002082.

    Google Scholar 

  • Stockdale, T., 1997. Coupled ocean-atmosphere forecasts in the presence of climate drift. Mon. Weather Rev., 125, 809–818.

    Article  Google Scholar 

  • Stockdale, T.N., D.L.T. Anderson, J.O.S. Alves and M.A. Balmaseda, 1998. Global seasonal rainfall forecasts using a coupled ocean atmosphere model. Nature, 392, 370–373.

    Article  Google Scholar 

  • Stommel, H., 1948. The westward intensification of wind driven ocean currents. Trans. Amer. Geophys. Union., 29, 202–206.

    Article  Google Scholar 

  • Tapley, B., J. Ries, S. Bettadpur, D. Chambers, M. Cheng, F. Condi, B. Gunter, Z. Kang, P. Nagel, R. Pastor, T. Pekker, S. Poole and F. Wang, 2005. GGM02 – An improved Earth gravity model from GRACE. J. Geodesy, 79, 467–478, doi:10.1007/s00190-005-0480-z.

    Article  Google Scholar 

  • Tomczak, M., 1981. A multi-parameter extension of temperature/salinity diagram techniques for the analysis of non-isopycnal mixing. Prog. Oceanogr., 10, 147–171.

    Article  Google Scholar 

  • Troccoli A., M. Balmaseda, J. Segschneider, J. Vialard, D.L.T. Anderson, K. Haines, T. Stockdale, F. Vitart and A.D. Fox, 2002. Salinity adjustments in the presence of temperature data assimilation. Mon. Weather Rev., 130, 89–102.

    Article  Google Scholar 

  • Troccoli, A. and K. Haines, 1999. Use of the temperature-salinity relation in a data assimilation context. J. Atmos. Ocean Tech., 16, 2011–2025.

    Article  Google Scholar 

  • Weaver, A.T., C. Deltel, E. Machu, S. Ricci and N. Daget, 2005. A multivariate balance operator for variational ocean data assimilation. Q. J. R. Meteorol. Soc., 131, 3605–3626.

    Article  Google Scholar 

  • Wunsch C., 1996. The Ocean Circulation Inverse Problem, Cambridge University Press, Cambridge, UK, 442pp.

    Book  Google Scholar 

  • Wust, G., 1935. Die Stratosphare des Atlantischen Ozeans. Deutsche Atlantische Exped. Meteor, 1925–1927. Wiss. Erg., Bd., VI, 1. Teil, 2. Lief., 288pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith Haines .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haines, K. (2010). Ocean Data Assimilation. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_20

Download citation

Publish with us

Policies and ethics