Skip to main content

Constituent Assimilation

  • Chapter
  • First Online:
Data Assimilation

Abstract

Background. In the 1990s, following years of development of meteorological data assimilation by the Numerical Weather Prediction (NWP) community, the data assimilation methodology began to be applied to constituents, with a strong focus on stratospheric ozone (Rood 2005; Lahoz et al. 2007a). Because of its comparatively later application, constituent data assimilation is less mature than meteorological data (henceforth NWP) assimilation. Nevertheless, there has been substantial progress over the last 15 years, with the field evolving from initial efforts to test the methodology to later efforts focusing on products for monitoring ozone and other constituents. More recently, the production of ozone forecasts by a number of operational centres has become routine. A notable feature of the application of the data assimilation methodology to constituents has been the strong interaction between the NWP and research communities, for example, in the EU-funded ASSET project (Lahoz et al. 2007b). A list of acronyms can be found in Appendix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Austin, J., 1992. Towards the four-dimensional variational assimilation of stratospheric chemical constituents. J. Geophys. Res., 97, 2569–2588.

    Article  Google Scholar 

  • Austin, J., B.R. Barwell, S.J. Cox, et al., 1994. The diagnosis and forecast of clear sky ultraviolet levels at the Earth’s surface. Met. Apps., 1, 321–336.

    Article  Google Scholar 

  • Baier, F., T. Erbertseder, O. Morgenstern, et al., 2005. Assimilation of MIPAS observations using a three-dimensional global chemistry-transport model. Q. J. R. Meteorol. Soc., 131, 3529–3542.

    Article  Google Scholar 

  • Bergamaschi, P., M. Krol, F. Dentener, et al., 2005. Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5. Atmos. Chem. Phys., 5, 2431–2460.

    Article  Google Scholar 

  • Blake, D. and R.S. Lindzen, 1973. Effect of photochemical models on calculated equilibria and cooling rates in the stratosphere. Mon. Weather Rev., 101, 783–802.

    Article  Google Scholar 

  • Blond, N. and R. Vautard, 2004. Three-dimensional ozone analyses and their use for short term ozone forecasts. J. Geophys. Res., 109, 10.1029/2004JD004515.

    Google Scholar 

  • Bormann, N. and S. Healy, 2006. A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS: Accounting for horizontal gradients. Q. J. R. Meteorol. Soc., 132, 2357–2376.

    Article  Google Scholar 

  • Bormann, N., S. Healy and M. Hamrud, 2007. Assimilation of MIPAS limb radiances in the ECMWF system. Part II: Experiments with a 2-dimensional observation operator. Q. J. R. Meteorol. Soc., 133, 329–346.

    Article  Google Scholar 

  • Bormann, N., M. Matricardi and S.B. Healy, 2005. RTMIPAS: A fast radiative transfer model for the assimilation of infrared limb radiances from MIPAS. Q. J. R. Meteorol. Soc., 131, 1631–1653.

    Article  Google Scholar 

  • Bormann, N. and J.-N. Thépaut, 2007. Assimilation of MIPAS limb radiances in the ECMWF system. Part I: Experiments with a 1-dimensional observation operator. Q. J. R. Meteorol. Soc., 133, 309–327.

    Article  Google Scholar 

  • Bouttier, F. and P. Courtier, 1999. Data assimilation concepts and methods. ECMWF training notes, March 1999. Available from http://www.ecmwf.int.

  • Burrows, W.R., M. Vallée, D.I. Wardle, et al., 1994. The Canadian operational procedure for forecasting total ozone and UV radiation. Met. Apps., 1, 247–265.

    Article  Google Scholar 

  • Caplan, P., J. Derber, W. Gemmill, et al., 1997. Changes to the 1995 NCEP operational medium-range forecast model analysis – forecast system. Weather Forecasting, 12, 581–594.

    Article  Google Scholar 

  • Cariolle, D. and M. Déqué, 1986. Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res., 91, 10825–10884.

    Article  Google Scholar 

  • Cariolle, D. and J.-J. Morcrette, 2006. A linearized approach to the radiative budget of the stratosphere: influence of the ozone distribution. Geophys. Res. Lett., 33, L05806, doi:10.1029/2005GL025597.

    Google Scholar 

  • Cariolle, D. and H. Teyssèdre, 2007. A revised linear ozone photochemistry parameterization for use in transport and general circulation models: Multi-annual simulations. Atmos. Chem. Phys., 7, 2183–2196.

    Article  Google Scholar 

  • Chapnik, B., G. Desroziers, F. Rabier and O. Talagrand, 2006. Diagnosis and tuning of observational error statistics in a quasioperational data assimilation setting. Q. J. R. Meteorol. Soc., 132, 543–565.

    Google Scholar 

  • Chipperfield, M.P., B.V. Khattatov and D.J. Lary, 2002. Sequential estimation of stratospheric chemical observations in a three-dimensional model. J. Geophys. Res., 107, 10.1029/2002JD002110.

    Google Scholar 

  • Connew, P., 1999. Chemical data assimilation using the UKMO Unified Model. Proceedings of the SODA Workshop on Chemical Data Assimilation, 9–10 December 1998, KNMI, De Bilt, Netherlands.

    Google Scholar 

  • Courtier, P., 1997. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 123, 2449–2461.

    Article  Google Scholar 

  • Coy, L., D.R. Allen, S.D. Eckermann, et al., 2007. Effects of model chemistry and data biases on stratospheric ozone assimilation. Atmos. Chem. Phys., 7, 2917–2935.

    Article  Google Scholar 

  • Daley, R., 1995. Estimating the wind field from chemical constituent observations: Experiments with a one-dimensional extended Kalman filter. Mon. Weather Rev., 123, 181–198.

    Article  Google Scholar 

  • Davies, T., M.J.P. Cullen, A.J. Malcolm, et al., 2005 A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759–1782.

    Article  Google Scholar 

  • Dee, D. and A. de Silva, 2003. The choice of variable for atmospheric moisture analysis. Mon. Weather Rev., 131, 155–171.

    Article  Google Scholar 

  • de Grandpré, J., R. Ménard, Y.J. Rochon, et al., 2009. Radiative impact of ozone on temperature predictability in a coupled chemistry-dynamics data assimilation system. Mon. Weather Rev., 137, 679–692.

    Article  Google Scholar 

  • Derber, J., H.-L. Pan, J. Alpert, et al., 1998. Changes to the 1998 NCEP operational MRF Model Analysis/Forecast system. Available from http://www.nws.noaa.gov/om/tpb/449/449body.htm.

  • Desroziers, G., L. Berre, B. Chapnik and P. Poli, 2005. Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385–3396.

    Article  Google Scholar 

  • Dessler, A.E., 2000. The Chemistry and Physics of Stratospheric Ozone. Academic Press, London, 209pp.

    Google Scholar 

  • Dethof, A., 2003. Assimilation of ozone retrievals from the MIPAS instrument onboard ENVISAT. ECMWF Tech Memo 428.

    Google Scholar 

  • Dethof, A., 2004. Monitoring and assimilation of MIPAS, SCIAMACHY and GOMOS retrievals at ECMWF. ESA Contract 17585/03/IOL: Technical support for global validation of ENVISAT data products.

    Google Scholar 

  • Dethof, A. and E. Hólm, 2004. Ozone assimilation in the ERA-40 reanalysis project. Q. J. R. Meteorol. Soc., 130, 2851–2872.

    Article  Google Scholar 

  • Douglass, A.R., M.R. Schoeberl, R.B. Rood and S. Pawson, 2003. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model. J. Geophys. Res., 108, Art. No. 4259.

    Google Scholar 

  • Dragani, R. and D. Dee, 2008. Progress in ozone monitoring and assimilation. ECMWF Newsletter, 116, 35–42, Summer 2008. Available from http://www.ecmwf.int.

    Google Scholar 

  • Eckermann, S.D., K.W. Hoppel, L. Coy, et al., 2008. High-altitude data assimilation experiments for the Northern Summer Mesosphere season of 2007. J. Atmos. Sol Terr. Phys., 71, 531–551.

    Article  Google Scholar 

  • ECMWF, 2007. ECMWF Newsletter No. 100 – Winter 2006/07. Available from http://www.ecmwf.int.

  • El Amraoui, L., P. Ricaud, J. Urban, et al., 2004. Assimilation of ODIN/SMR O3 and N2O measurements in a three-dimensional chemistry transport model. J. Geophys. Res., 109, 10.1029/2004JD004796.

    Google Scholar 

  • Elbern, H. and H. Schmidt, 1999. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling. J. Geophys. Res., 104, 18583–18598.

    Article  Google Scholar 

  • Elbern, H. and H. Schmidt, 2001. Ozone episode analysis by four-dimensional variational chemistry data assimilation. J. Geophys. Res., 106, 3569–3590.

    Article  Google Scholar 

  • Elbern, H., H. Schmidt and A. Ebel, 1997. Variational data assimilation for tropospheric chemistry modeling. J. Geophys. Res., 102, 15967–15985.

    Article  Google Scholar 

  • Elbern, H., A. Strunk, H. Schmidt and O. Talagrand, 2007. Emission rate and chemical state estimation by 4-dimensional variational inversion. Atmos. Chem. Phys., 7, 3749–3769.

    Article  Google Scholar 

  • El Serafy, G.Y. and H.M. Kelder, 2003. Near-real-time approach to assimilation of satellite-retrieved 3D ozone fields in a global model using a simplified Kalman filter. Q. J. R. Meteorol. Soc., 129, 3099–3120.

    Article  Google Scholar 

  • El Serafy, G.Y., R.J. van der A, H. Eskes and H.M. Kelder, 2002. Assimilation of 3D ozone field in global chemistry transport models using the full Kalman filter. Adv. Space Res., 30, 2473–2478.

    Article  Google Scholar 

  • Engelen, R.J., S. Serrar and F. Chevallier, 2009. Four-dimensional data asimilation of atmospheric CO2 using AIRS observations. J. Geophys. Res., 114, D03304, doi: 10.1029/2008JD010739.

    Google Scholar 

  • Errera, Q., S. Bonjean, S. Chabrillat, et al., 2007. BASCOE assimilation of ozone and nitrogen dioxide observed by MIPAS and GOMOS: Comparison between the two sets of analyses. ESA Special Publication SP-636.

    Google Scholar 

  • Errera, Q., F. Daerden, S. Chabrillat, et al., 2008. 4D-Var assimilation of MIPAS chemical observations: Ozone and nitrogen dioxide analyses. Atmos. Chem. Phys., 8, 6169-6187.

    Article  Google Scholar 

  • Errera, Q. and D. Fonteyn, 2001. Four-dimensional variational chemical data assimilation of CRISTA stratospheric measurements. J. Geophys. Res., 106, 12253–12265.

    Article  Google Scholar 

  • Eskes, H.J., 2006. The integration of atmospheric chemistry observations by next generation global/hemispheric and regional and NWP models. In Chemical Data Assimilation for the Observation of the Earth’s Atmosphere. ACCENT/WMO Expert Workshop in support of IGACO, Barrie, L.A., J.P. Burrows, P. Monks and P. Borrell (eds.), WMO Tech, Report 1360, GAW Report 169, pp 44–49.

    Google Scholar 

  • Eskes, H.J., A. Segers and P.F.J. van Velthoven, 2005. Ozone forecasts of the Stratospheric Polar Vortex-Splitting Event in September 2002. J. Atmos. Sci., 62, 812–821.

    Article  Google Scholar 

  • Eskes, H.J., P.F.J. van Velthoven and H.M. Kelder, 2002. Global ozone forecasting based on ERS-2 GOME observations. Atmos. Chem. Phys., 2, 271–278.

    Article  Google Scholar 

  • Eskes, H.J., P.F.J. van Velthoven, P.F.M. Valks and H.M. Kelder, 2003. Assimilation of GOME total-ozone satellite observations in a three-dimensional tracer-transport model. Q. J. R. Meteorol. Soc., 129, 1663–1681.

    Article  Google Scholar 

  • Eyring, V., N. Butchart, D.W. Waugh, et al., 2006. Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past. J. Geophys. Res., 111, 10.1029/2006JD007327.

    Google Scholar 

  • Fierli, F., A. Hauchecorne, S. Bekki, et al., 2002. Data assimilation of stratospheric ozone using a high-resolution transport model. Geophys. Res. Lett., 29, 10.1029/2001GL014272.

    Google Scholar 

  • Fisher, M. and D.J. Lary, 1995. Lagrangian 4-dimensional variational data assimilation of chemical species. Q. J. R. Meteorol. Soc., 121, 1681–1704.

    Article  Google Scholar 

  • Fonteyn, D., Q. Errera, M. DeMazière, et al., 2000. 4D-Var assimilation of stratospheric aerosol satellite data. Adv. Space Res., 26, 2049–2052.

    Article  Google Scholar 

  • Fortuin, J.P.F. and H. Kelder, 1998. An ozone climatology based on ozonesonde and satellite measurements. J. Geophys. Res., 103, 31709–31734.

    Article  Google Scholar 

  • Geer, A.J., W.A. Lahoz, S. Bekki, et al., 2006a. The ASSET intercomparison of ozone analyses: Method and first results. Atmos. Chem. Phys., 6, 5445–5474.

    Article  Google Scholar 

  • Geer, A.J., W.A. Lahoz, D.R. Jackson, et al., 2007. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system. Atmos. Chem. Phys., 7, 939–959.

    Article  Google Scholar 

  • Geer, A.J., C. Peubey, R. Bannister, et al., 2006b. Assimilation of stratospheric ozone from MIPAS into a global general circulation model: The September 2002 vortex split. Q. J. R. Meteorol. Soc., 132, 231–257.

    Article  Google Scholar 

  • Hadjinicolau, P., J.A. Pyle, M.P. Chipperfield and J.A. Kettleborough, 1997. Effect of interannual meteorological variability on mid latitude O3. Geophys. Res. Lett., 24, 2993–2996.

    Google Scholar 

  • Hollingsworth, A., 2005. Global Earth-system modelling using space and in situ data. ECMWF Seminar Proceedings, September 2005, Reading, UK. Available from http://www.ecmwf.int.

  • Hollingsworth, A., R.J. Engelen, C. Textor, et al., 2008. Toward a monitoring and forecasting system for atmospheric composition: The GEMS project. Bull. Amer. Meteorol. Soc., 89, doi: 10.1175/2008BAMS2355.1.

    Google Scholar 

  • Hólm, E., E. Andersson, A. Beljaars, et al., 2002. Assimilation and modelling of the hydrological cycle: ECMWF’s status and plans. ECMWF Tech Memo 383.

    Google Scholar 

  • Houtekamer, P.L., L.M. Herschel, G. Pellerin, et al., 2005. Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Weather Rev., 133, 604–620.

    Article  Google Scholar 

  • IGACO, 2004. The changing atmosphere. An integrated global atmospheric chemistry observation theme for the IGOS partnership. ESA SP-1282, Report GAW No. 159 (WMO TD No. 1235), September 2004; Implementation up-date, December 2004. Available from http://www.igospartners.org/docsTHEM.htm.

  • Jackson, D.R., 2004. Improvements in data assimilation at the Met Office. Forecasting Research Technical Report No. 454, Met Office.

    Google Scholar 

  • Jackson, D.R., 2007. Assimilation of EOS MLS ozone observations in the met office data assimilation system. Q. J. R. Meteorol. Soc., 133, 1771–1788.

    Article  Google Scholar 

  • Jackson, D.R. and Y.J. Orsolini, 2008. Estimation of Arctic ozone loss in winter 2004/05 based on assimilation of EOS MLS and SBUV/2 observations. Q. J. R. Meteorol. Soc., 134, 1833–1841.

    Article  Google Scholar 

  • Jackson, D.R. and R. Saunders, 2002. Ozone data assimilation: Preliminary system. Forecasting Research Technical Report No. 394, Met Office.

    Google Scholar 

  • Juckes, M.N., 2006. Evaluation of MIPAS ozone fields assimilated using a new algorithm constrained by isentropic tracer advection. Atmos. Chem. Phys., 6, 1549–1565.

    Google Scholar 

  • Khattatov, B.V., 2003. Multivariate chemical data assimilation. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 279–288, 378pp.

    Chapter  Google Scholar 

  • Khattatov, B.V., J.C. Gille, L.V. Lyjak, et al., 1999. Assimilation of photochemically active species and a case analysis of UARS data. J. Geophys. Res., 104, 18715–18737.

    Article  Google Scholar 

  • Khattatov, B.V., J.-F. Lamarque, L.V. Lyjak, et al., 2000. Assimilation of satellite observations of long-lived chemical species in global chemistry transport models. J. Geophys. Res., 105, 29135–29144.

    Article  Google Scholar 

  • Khattatov, B., L. Lyjak and J. Gille, 2001. On applications of photochemical models to the design of measurement strategies. Geophys. Res. Lett., 28, 2377–2380.

    Article  Google Scholar 

  • Lahoz, W.A., 2006. Chemical data assimilation: Choices and challenges. In Chemical Data Assimilation for the Observation of the Earth’s Atmosphere. ACCENT/WMO Expert Workshop in support of IGACO, Barrie, L.A., J.P. Burrows, P. Monks and P. Borrell (eds.), WMO Tech, Report 1360, GAW Report 169, pp 106–110.

    Google Scholar 

  • Lahoz, W.A., R. Brugge, D.R. Jackson, et al., 2005. An observing system simulation experiment to evaluate the scientific merit of wind and ozone measurements from the future SWIFT instrument. Q. J. R. Meteorol. Soc., 131, 503–523.

    Article  Google Scholar 

  • Lahoz, W.A., Q. Errera, R. Swinbank and D. Fonteyn, 2007a. Data assimilation of stratospheric constituents: A review. Atmos. Chem. Phys., 7, 5745–5773.

    Article  Google Scholar 

  • Lahoz, W.A., A.J. Geer, S. Bekki, et al., 2007b. The Assimilation of Envisat data (ASSET) project. Atmos. Chem. Phys., 7, 1773–1796.

    Article  Google Scholar 

  • Lamarque, J.-F. and J.C. Gille, 2003. Improving the modeling of error variance evolution in the assimilation of chemical species: Applications to MOPITT data. Geophys. Res. Lett., 30, 10.1029/2003GL016994.

    Google Scholar 

  • Lamarque, J.-F., B.V. Khattatov and J.C. Gille, 2002. Constraining tropospheric ozone column through data assimilation. J. Geophys. Res., 107, 10.1029/2001JD001249.

    Google Scholar 

  • Lary, D.J., 1999. Data assimilation: A powerful tool for atmospheric chemistry. Phil. Trans. R. Soc. Lond., A357, 3445–3457.

    Article  Google Scholar 

  • Lary, D.J., B. Khattatov and H.Y. Mussa, 2003. Chemical data assimilation: A case study of solar occultation data from the ATLAS 1 mission of the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS). J. Geophys. Res., 108, 10.101029/2003JD003500.

    Google Scholar 

  • Lemus-Deschamps, L., S. Grainger, L. Rikus, et al., 2005. Australian UV and ozone forecasting system. Available from http://www.bom.gov.au/bmrc/mdev/expt/uvindex/uvi.shtml.

  • Levelt, P.F., B.V. Khattatov, J.C. Gille, et al., 1998. Assimilation of MLS ozone measurements in the global three-dimensional chemistry transport model ROSE. Geophys. Res. Lett., 25, 4493–4496.

    Article  Google Scholar 

  • Lindzen, R.S. and R. Goody, 1965. Radiative and photochemical processes in mesospheric dynamics: Part I, models for radiative and photochemical processes. J. Atmos. Sci., 22, 341–348.

    Article  Google Scholar 

  • Logan, J.A., 1999. An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone. J. Geophys. Res., 104, 16115–16149.

    Article  Google Scholar 

  • Long, C.S., 2003. UV Index forecasting practices around the world. SPARC Newsletter no. 21, June 2003.

    Google Scholar 

  • Long, C.S., S. Zhu and R. Treadon, 2007. Assimilation of multiple ozone products into the NCEP operational forecast model. Presentation at the SPARC Data Assimilation Workshop, Toronto, September 2007, abstract available from http://atlas-conferences.com/c/a/u/e/10.htm.

  • Lorenc, A.C., 2003. The potential of the ensemble Kalman filter for NWP: A comparison with 4D-Var. Q. J. R. Meteorol. Soc., 129, 3183–3204.

    Article  Google Scholar 

  • Lorenc, A.C. and O. Hammon, 1988. Objective quality control of observations using Bayesian methods: Theory and practical implementation. Q. J. R. Meteorol. Soc., 114, 515–543.

    Article  Google Scholar 

  • Louvel, S., 2001. Implementation of a dual variational algorithm for assimilation of synthetic altimeter data in the oceanic primitive equation model MICOM. J. Geophys. Res., 106, 9199–9212.

    Article  Google Scholar 

  • Lyster, P.M., S.E. Cohn, R. Ménard, et al., 1997. Parallel implementation of a Kalman filter for constituent data assimilation. Mon. Weather Rev., 125, 1674–1686.

    Google Scholar 

  • Marchand, M., S. Bekki, L. Denis and J.-P. Pommereau, 2003. Test of the nightime polar stratospheric NO2 decay using wintertime SAOZ measurements and chemical data assimilation. Geophys. Res. Lett., 30, 10.1029/2003GL017582.

    Google Scholar 

  • Marchand, M., S. Bekki, A. Hauchecorne and J.-L. Bertaux, 2004. Validation of the self-consistency of GOMOS NO3, NO2 and O3 data using chemical data assimilation. Geophys. Res. Lett., 31, 10.1029/2004GL019631.

    Google Scholar 

  • Marchand, M., S. Bekki, F. Lefèvre and A. Hauchecorne, 2007. Temperature retrieval from stratospheric O3 and NO3 GOMOS data. Geophys. Res. Lett., 34, L24809, doi: 10.1029/2007GL030280.

    Google Scholar 

  • Massart, S., D. Cariolle and V.-H. Peuch, 2004. Towards an improvement of the atmospheric ozone distribution and variability by the assimilation of satellite data. C.R. Geosci., 15, 1305–1310.

    Google Scholar 

  • Massart, S., C. Clerbaux, D. Cariolle, et al., 2009. First steps towards the assimilation of IASI ozone data into the MOCAGE-PALM system. Atmos. Chem. Phys., 9, 5073–5091.

    Article  Google Scholar 

  • Mathison, C., D.R. Jackson and M. Keil, 2007. Methods of improving the representation of ozone in the Met Office model. NWP Tech. Report No. 502, Met Office.

    Google Scholar 

  • McCormack J.P., S.D. Eckermann, L. Coy, et al., 2004. NOGAPS-ALPHA model simulations of stratospheric ozone during the SOLVE2 campaign, Atmos. Chem. Phys., 4, 2401–2423.

    Article  Google Scholar 

  • McCormack, J.P., S.D. Eckermann, D.E. Siskind and T.J. McGee, 2006. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models. Atmos. Chem. Phys., 6, 4943–497.

    Google Scholar 

  • McLaughlin, D., A. O’Neill, J. Derber and M. Kamachi, 2005. Opportunities for enhanced collaboration within the data assimilation community. Q. J. R. Meteorol. Soc., 131, 3683–3693.

    Article  Google Scholar 

  • McLinden C.A., S.C. Olsen B. Hannegan, et al., 2000. Stratospheric ozone in 3-D models: A simple chemistry and the cross-tropopause flux. J. Geophys. Res., 105, 14653–14665.

    Article  Google Scholar 

  • McNally, A.P., P. Watts, J. Smith, et al., 2006. The assimilation of AIRS radiance data at ECMWF. Q. J. R. Meteorol. Soc., 132, 935–958.

    Google Scholar 

  • Meirink, J.F., H.J. Eskes and A.P.H. Goede, 2006. Sensitivity analysis of methane emissions derived from SCIAMACHY observations through inverse modelling. Atmos. Chem. Phys., 6, 9405–9445.

    Article  Google Scholar 

  • Ménard, R., S. Chabrillat, C. Charette, et al., 2007. Coupled chemistry-dynamics data assimilation. Presentation at the SPARC Data Assimilation Workshop, Toronto, September 2007, abstract available from http://atlas-conferences.com/c/a/u/e/25.htm.

  • Ménard, R. and L.-P. Chang, 2000. Stratospheric assimilation of chemical tracer observations using a Kalman filter, Part II: Chi-squared validated results and analysis of variance and correlation dynamics. Mon. Weather Rev., 128, 2672–2686.

    Article  Google Scholar 

  • Ménard, R., S.E. Cohn, L.P. Chang and P.M. Lyster, 2000. Stratospheric assimilation of chemical tracer observations using a Kalman filter, Part I: Formulation. Mon. Weather Rev., 128, 2654–2671.

    Article  Google Scholar 

  • Migliorini, S., C. Piccolo and C.D. Rodgers, 2004. Intercomparison of direct and indirect measurements: MIPAS versus sonde ozone profiles. J. Geophys. Res., 109, 10.1029/2004JD004988.

    Google Scholar 

  • Monge-Sanz, B.M., M.P. Chipperfield, A.J. Simmons and S.M. Uppala, 2007. Mean age of air and transport in a CTM: Comparison of different ECMWF analyses. Geophys. Res. Lett., 34, 10.1029/2006GL028515.

    Google Scholar 

  • Monks, P.S., 2003. Tropospheric photochemistry. In Handbook of Atmospheric Sciences, Hewitt, C.N. and A.V. Jackson (eds.), Blackwell Science, Oxford, pp 156–187.

    Chapter  Google Scholar 

  • Morcrette, J.-J., 2003. Ozone radiation interactions in the ECMWF forecast system. ECMWF Tech Memo 375.

    Google Scholar 

  • Müller, M.D., P.K. Bhartia and I. Å tajner, 2004. Assimilation of SBUV version 8 radiances into the GEOS DAS. Proceedings of the Quadrennial Ozone Symposium, GOS, Kos, Greece, June 2004. Available from http://ftp://gmaoftp.gsfc.nasa.gov/pub/papers/ivanka/ozone_papers/QOS04.Mueller.pdf.

  • Müller, J.-F. and T. Stavrakou, 2005. Inversion of CO and NOx emissions using the adjoint of the IMAGES model. Atmos. Chem. Phys., 5, 1157–1186.

    Article  Google Scholar 

  • Oikonomou, E. and A. O’Neill, 2006. An evaluation of water vapour and ozone in the ERA-40 reanalysis compared with UARS data. J. Geophys. Res., 111, 10.1029/2004JD005341.

    Google Scholar 

  • Orsolini, Y.J. and G. Nikulin, 2006. A low-ozone episode during the European heat wave of August 2003. Q. J. R. Meteorol. Soc., 132, 667–680.

    Article  Google Scholar 

  • Pétron, G., C. Granier, B. Khattatov, et al., 2004. Monthly CO surface sources inventory based on the 2000–2001 MOPITT satellite data. Geophys. Res. Lett., 31, 10.1029/2004GL020560.

    Google Scholar 

  • Peuch, A., J.-N. Thépaut and J. Pailleux, 2000. Dynamical impact of total-ozone observations in a four-dimensional variational assimilation. Q. J. R. Meteorol. Soc., 126, 1641–1659.

    Article  Google Scholar 

  • Plumb, R.A. and M.K.W. Ko, 1992. Interrelationships between mixing ratios of long-lived stratospheric constituents. J. Geophys. Res., 97, 10145–10156.

    Article  Google Scholar 

  • Polavarapu, S., S. Ren, Y. Rochon, et al., 2005a. Data assimilation with the Canadian middle atmosphere model. Atmos. Ocean, 43, 77–100.

    Article  Google Scholar 

  • Polavarapu, S., T.G. Shepherd, Y. Rochon and S. Ren, 2005b. Some challenges of middle atmosphere data assimilation. Q. J. R. Meteorol. Soc., 131, 3513–3527.

    Article  Google Scholar 

  • Rawlins, F., S.P. Ballard, K.J. Bovis, et al., 2007. The met office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc., 133, 347–362.

    Article  Google Scholar 

  • Rienecker, M.M., M.J. Suarez, R. Todling, et al., 2008. The GEOS-5 data assimilation system – documentation of versions 5.01, 5.1.0 and 5.2.0. NASA Tech. Memo., NASA/TM-2008-104606, Vol. 27, 102 pp. Available from http://gmao.gsfc.nasa.gov/pubs/docs/GEOSS_104606_Vol27.pdf.

  • Riishøjgaard, L.-P., 1996. On four-dimensional variational assimilation of ozone data in weather-prediction models. Q. J. R. Meteorol. Soc., 122, 1545–1572.

    Article  Google Scholar 

  • Riishøjgaard, L.-P., I. Å tajner and G.-P. Lou, 2000. The GEOS ozone data assimilation system. Adv. Space Res., 25, 1063–1072.

    Article  Google Scholar 

  • Rood, R.B., 2003. Ozone assimilation. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 263–277, 378pp.

    Chapter  Google Scholar 

  • Rood, R.B., 2005. Assimilation of stratospheric meteorological and constituent observations: A Review. SPARC Newsletter no. 25, July 2005.

    Google Scholar 

  • Rösevall, J.D., D.P. Murtagh and J. Urban, 2007a. Ozone depletion in the 2006/2007 Arctic winter. Geophys. Res. Lett., 34, L21809, doi:10.1029/2007GL030620.

    Google Scholar 

  • Rösevall, J.D., D.P. Murtagh, J. Urban and A.K. Jones, 2007b. A study of polar ozone depletion based on sequential assimilation of satellite data from the ENVISAT/MIPAS and Odin/SMR instruments. Atmos. Chem. Phys., 7, 899–911.

    Article  Google Scholar 

  • Russell III, J.M., L.L. Gordley, J.H. Park, et al., 1993. The Halogen occultation experiment. J. Geophys. Res., 98, 10777–10797.

    Article  Google Scholar 

  • Sassi, F., B.A. Boville, D. Kinnison and R.R. Garcia, 2005. The effects of interactive ozone chemistry on simulations of the middle atmosphere. Geophys. Res. Lett., 32, 10.1029/2004GL022131.

    Google Scholar 

  • Saunders, R., M. Matricardi and P. Brunel, 1999. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc., 125, 1407–1426.

    Google Scholar 

  • Schoeberl, M.R., A.R. Douglass, Z. Zhu and S. Pawson, 2003. A comparison of the lower stratospheric age spectra derived from a general circulation model and two data assimilation systems. J. Geophys. Res., 108, 10.1029/2002JD002652.

    Google Scholar 

  • Segers, A.J., H.J. Eskes, A.R.J. van der, et al., 2005. Assimilation of GOME ozone profiles and a global chemistry-transport model. Q. J. R. Meteorol. Soc., 131, 477–502.

    Article  Google Scholar 

  • Semane, N., V.-H. Peuch, S. Pradier, et al., 2009. On the extraction of wind information from the assimilation of ozone profiles in Météo-France 4D-Var operational NWP suite. Atmos. Chem. Phys., 9, 4855–4867.

    Article  Google Scholar 

  • Simmons, A.J., M. Hortal, G. Kelly, et al., 2005. ECMWF analyses and forecasts of stratospheric winter polar vortex breakup: September 2002 in the Southern Hemisphere and related events. J. Atmos. Sci., 62, 668–689.

    Article  Google Scholar 

  • SPARC, 2000. SPARC: Assessment of upper tropospheric and lower stratospheric water vapour. WCRP-113, WMO/TD No. 1043, SPARC Report No. 2, Kley, D., J.M. Russell and C. Phillips (eds.), 2000.

    Google Scholar 

  • Å tajner, I., L.-P. Riishøjgaard and R.B. Rood, 2001. The GEOS ozone data assimilation system: Specification of error statistics. Q. J. R. Meteorol. Soc., 127, 1069–1094.

    Article  Google Scholar 

  • Å tajner, I. and K. Wargan, 2004. Antarctic stratospheric ozone from the assimilation of occultation data. Geophys. Res. Lett., 31, 10.1029/2004GL020846.

    Google Scholar 

  • Å tajner, I., K. Wargan, L.-P. Chang, et al., 2006. Assimilation of ozone profiles from the improved limb atmospheric spectrometer-II: Study of Antarctic ozone. J. Geophys. Res., 111, 10.1029/2005JD006448.

    Google Scholar 

  • Å tajner, I., K. Wargan, S. Pawson, et al., 2008. Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns. J. Geophys. Res., 113, D16532, doi: 10.1029/2007JD008863.

    Google Scholar 

  • Å tajner, I., N. Winslow, R.B. Rood and S. Pawson, 2004. Monitoring of observation errors in the assimilation of satellite ozone data. J. Geophys. Res., 109, 10.1029/2003JD006309.

    Google Scholar 

  • Stolarski, R. and A.R. Douglass, 1985. Parameterization of the photochemistry of stratospheric ozone including catalytic processes. J. Geophys. Res., 90, 10709–10718.

    Article  Google Scholar 

  • Streibel, M., M. Rex, P. von der Gathen, et al., 2006. Chemical ozone loss in the Arctic winter 2002/2003 determined with Match. Atmos. Chem. Phys., 6, 2783–2792.

    Article  Google Scholar 

  • Struthers, H., R. Brugge, W.A. Lahoz, et al., 2002. Assimilation of ozone profiles and total column measurements into a global general circulation model. J. Geophys. Res., 107, 10.1029/2001JD000957.

    Google Scholar 

  • Talagrand, O., 2003. A posteriori validation of assimilation algorithms. In Data Assimilation for the Earth System. NATO Science Series: IV. Earth and Environmental Sciences 26, Swinbank, R., V. Shutyaev and W.A. Lahoz (eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 85–95, 378pp.

    Google Scholar 

  • Tan, W.-W., M.A. Geller, S. Pawson and A. de Silva, 2004. A case study of excessive subtropical transport in the stratosphere of a data assimilation system. J. Geophys. Res., 109, Art. No. D11102.

    Google Scholar 

  • Tangborn, A., I. Å tajner, M. Buchwitz, et al., 2009. Assimilation of SCIAMACHY total column CO observations: Global and regional analysis of data impact. J. Geophys. Res., 114, 10.1029/2008JD010781.

    Google Scholar 

  • Thornton, H., D.R. Jackson, S. Bekki, et al., 2009. The ASSET intercomparison of stratosphere and lower mesosphere humidity analyses. Atmos. Chem. Phys., 9, 995–1016.

    Article  Google Scholar 

  • Trenberth, K. (ed.), 1992. Climate System Modeling, Cambridge University Press, Cambridge, 788pp.

    Google Scholar 

  • Uppala, S.M., P.W. KÃ¥llberg, A.J. Simmons, et al., 2005. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Vigouroux, C., M. De Mazière, Q. Errera, et al., 2007. Comparison between ground-based FTIR and MIPAS N2O and HNO3 profiles before and after assimilation in BASCOE. Atmos. Chem. Phys., 7, 377–396.

    Article  Google Scholar 

  • Wang, K.-Y., D.J. Lary, D.E. Shallcross, et al., 2001. A review on the use of the adjoint method in four-dimensional atmospheric-chemistry data assimilation. Q. J. R. Meteorol. Soc., 127, 2181–2204.

    Article  Google Scholar 

  • Wargan, K., I. Å tajner, S. Pawson, et al., 2005. Assimilation of ozone data from the Michelson interferometer for passive atmospheric sounding. Q. J. R. Meteorol. Soc., 131, 2713–2734.

    Article  Google Scholar 

  • WMO, 2006. Scientific Assessment of Ozone Depletion, 2006. World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No. 50. Available from http://www.wmo.ch/web/arep/reports/ozone_2006/ozone_asst_report.html.

Download references

Acknowledgments

Thanks to R. Dragani, I. Å tajner, C. Long, S. Eckermann, H. Eskes, S. Polavarapu and D. Jackson for providing updated information on constituent assimilation efforts at ECMWF, GMAO, NCEP, NRL, KNMI, Canada and the Met Office (UK), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Lahoz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lahoz, W., Errera, Q. (2010). Constituent Assimilation. In: Lahoz, W., Khattatov, B., Menard, R. (eds) Data Assimilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74703-1_18

Download citation

Publish with us

Policies and ethics