Skip to main content

Abstract

The secondary metabolite azadirachtin (C35H44O16) is a tetranortriterpenoid obtained from the neem tree (Azadirachta indica). It has long been investigated for its biopesticidal properties. It is a natural insecticide, known to affect feeding, growth, reproduction and metamorphosis of the insect pests. Because of the broad-spectrum control of insects and the relatively low nontarget toxicity it has been widely used in agriculture. To add to its advantage the biopesticidal property of azadirachtin is not only limited to phytophagous insects, but is also known to affect the other pathogenous organisms like nematodes, fungi and micro-organisms. It is a highly oxygenated and complex molecule, which makes its chemical synthesis difficult as well as uneconomical. Studies are still in progress to make its chemical synthesis successful and practically feasible for the mass production of azadirachtin. Currently, azadirachtin is isolated by solvent extraction of the seeds of the Azadirachta indica tree. There are various limitations in extracting azadirachtin from plant sources, majorly due to its limited availability/short shelf-life of seeds, degradation during storage and considerable genotypic/environmental variation in its content from different sources. At present, the demand for azadirachtin is greater than the supply. However, due to variability of azadirachtin available in seeds (0.2–0.6 %) it is difficult to base its mass production on natural sources. A significantly larger amount of material (seeds) would need to be processed to yield a reasonable amount of azadirachtin. Instead, it would be better to rely on a rather stable parent cell line that can be cultivated in vitro (in bioreactors) with a faster doubling time. A biotechnological approach can be very useful for reaching longterm goals. A deeper understanding of different aspects of large-scale azadirachtin production is therefore very important. In recent years, a considerable amount of information has been obtained on the production of azadirachtin by cell and tissue cultures of Azadirachta indica. This approach has an added potential of increasing yield by culture selection and manipulation using elicitors, precursors, permeabilising agents and growth regulators. Azadirachtin is extremely liable to atmospheric degradation in the presence of sunlight. Although few investigations regarding enhancement in its atmospheric stability have been done, more detailed analysis is required to select appropriate stabilisers against the photo-degradation of azadirachtin. A great deal of work with Azadirachta indica has been focused on the extraction and quantification of azadirachtin. Purification of azadirachtin is difficult to accomplish, especially on a preparative scale due to its complexity and similarity in structure of the chemicals found in the seeds, foliage and cell culture. Reverse-phase high-performance liquid chromatography is widely used for the qualitative and quantitative estimation of azadirachtin. Use of other methods like super-critical fluid chromatography (SFC) and liquid chromatography-mass spectrometry combined with flash chromatography, thin-layer chromatography and SFC have also been documented for authentic quantification. Even though azadirachtin has long been recognised as a potent biopesticide, no reports are available to date on the commercial production of azadirachtin by plant cell/tissue culture. This chapter provides a deeper insight with respect to the origin, chemical nature, application, mode of action and prevalent technologies for the production of this high-value bioactive molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butterworth JH, Morgan ED (1968) J Chem Soc Chem Comm 1:23

    Google Scholar 

  2. Wan MT (1994) Environment Canada’s Internet resource for weather and environmental information. Chemicals Evaluation, Environmental Protection, Pacific Region, Environment Canada. p 79

    Google Scholar 

  3. Schmutterer H (1990) Ann Rev Entomol 35:271

    CAS  Google Scholar 

  4. Mordue AJ, Blackwell A (1993) J Insect Physiol 39:903

    CAS  Google Scholar 

  5. Govindchari TR (1992) Curr Sci 63:117

    Google Scholar 

  6. Fukuzaki T, Kobayashi S, Hibi T, Ikuma Y, Ishihara J, Kanoh N, Murai A (2002) Org Lett 4:2877

    CAS  Google Scholar 

  7. Nicolaou KC, Sasmal PK, Koftis TV, Converso A, Loizidou E, Kaiser F, Roecker AJ, Dellios K, Sun XW, Petrovic G (2005) Angew Chem Int 44:3447

    CAS  Google Scholar 

  8. Nicolaou KC, Sasmal PK, Roecker AJ, Sun XW, Mandal S, Converso A (2005) Angew Chem Int Ed 44:3443

    CAS  Google Scholar 

  9. Van der Esch SA, Giagnacovo G, Meccioni O, Vitali F (1993) Giorn Bot Ital 127:927

    Google Scholar 

  10. Allan EJ, Stuchbury T, Mordue(Luntz) AJ (1999) In: Bajaj YPS (ed) Biotechnology in Agriculture and Forestry Science Series, vol 43. Springer, Berlin Heidelberg New York, pp 11–41

    Google Scholar 

  11. Rangaswamy NS, Promila (1972) Z Pflanzenphysiol 67:377

    Google Scholar 

  12. Sanyal M, Datta PC (1986) Acta Hort 188:99

    Google Scholar 

  13. Wewetzer A (1998) Phytoparasitica 26:47

    Google Scholar 

  14. Prakash G, Bhojwani SS, Srivastava AK (2002) Biotechnol Bioprocess Eng 7:185

    CAS  Google Scholar 

  15. Allan EJ, Eeswara JP, Johnson J, Mordue AJ, Morgan ED, Stuchbury T (1994) Pestic Sci 42:147

    CAS  Google Scholar 

  16. Kearney ML, Allan EJ, Hooker JE, Mordue AJ (1994) Plant Cell Tiss Org Cult 37:67

    Google Scholar 

  17. Veeresham C, Kumar MR, Sowjanya D, Kokate CK, Apte SS (1998) Fitoterapia 69:423

    CAS  Google Scholar 

  18. Srividya N, Sridevi BP, Satyanarayana P (1998) Ind J Plant Physiol 3:129

    CAS  Google Scholar 

  19. Allan EJ, Eeswara JP, Johnson J, Jarvis AP, Mordue AJ, Morgan ED, Stuchbury T (2002) Plant Cell Rep 21:374

    CAS  Google Scholar 

  20. Balaji K, Veeresham C, Srisilam K, Kokate C (2003) J Plant Biotechnol 5:121

    Google Scholar 

  21. Raval KN, Hellwing S, Prakash G, Plasencia RA, Srivastava AK, Buchs J (2003) J Biosci Bioeng. 96:16

    CAS  Google Scholar 

  22. Kraus H, Bokel M, Klank A, Pohnl H (1985) Tetrahedron Lett 26:6435

    CAS  Google Scholar 

  23. Bilton JN, Broughton, HB, Jones PS, Ley SV, Lidert Z, Morgan ED, Rzepa HS, Sheppard RN, Slawin AMZ, Williams DJ (1987) Tetrahedron 43:2805

    Google Scholar 

  24. Turner CJ, Tempesta MS, Taylor RB, Zagorski MG, Termini JS, Schroeder DR, Nakanishi K (1987) Tetrahedron 43:2789

    CAS  Google Scholar 

  25. Ambrosino P, Fresa R, Fogliano V, Monti SM, Ritieni A (1999) J Agric Food Chem 47:5252

    CAS  Google Scholar 

  26. Ley SV, Denholm AA, Wood A (1993) Nat Prod Rep 10:109

    CAS  Google Scholar 

  27. Damarla SR (2001) In: Kelany IM, Reinhard W (eds) Proceedings of the Workshop on Pratice Oriented Results on Use of Plant Extracts and Pheromones, Cairo, Egypt. p 11

    Google Scholar 

  28. Ley SV (1994) Pure and Appl Chem 66:2099

    CAS  Google Scholar 

  29. Mordue (Luntz) AJ, Nisbet AJ (2000) An Soc Entomol Bras 29:615

    Google Scholar 

  30. Aldhous P (1992) Science 258:893

    CAS  Google Scholar 

  31. S. Raina, B.A. Bhanu Prasad, and V.K. Singh (2003) Arkivoc III:16

    Google Scholar 

  32. Mukherjee SN, Rawal SK, Ghumare SS, Sharma RN (1993) Experientia 49:557

    CAS  Google Scholar 

  33. Mordue(Luntz) AJ, Simmonds MSJ, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Pestic Sci 54:277

    Google Scholar 

  34. Subapriya R, Nagini S (2005) Curr Med Chem 5:149

    CAS  Google Scholar 

  35. Akudugu J, Gade G, Bohm L (2001) Life Sciences 68:1153

    CAS  Google Scholar 

  36. Salehzadeh A, Akhkha A, Cushley W, Adams RLP, Kusel JR, Strang RHC (2003) Insect Biochem Mol Biol 33:681

    CAS  Google Scholar 

  37. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Biochem J 295:517

    CAS  Google Scholar 

  38. www.ch.ic.ac.uk/spivey/teaching/org4biosynthesis/org405isoprenoids.pdf

    Google Scholar 

  39. Govindachari TR, Sandhya G, Ganeshraj SP (1990) J Chromatogr 513:389

    CAS  Google Scholar 

  40. Gautam VK, Nanda K, Gupta SC (1993) Plant Cell TissOrg Cult 34:13

    CAS  Google Scholar 

  41. Kuruvilla T, Komaraiah P, Ramakrishna SV (1999) Ind J Exp Bot 37:89

    CAS  Google Scholar 

  42. Lavie D, Levy EC, Jain MK (1971) Tetrahedron 27:3927

    CAS  Google Scholar 

  43. Huang HP, Morgan ED (1990) J Chromatogr 519:137

    CAS  Google Scholar 

  44. Ismann MB, Koul O, Luczynski A, Kaminski J (1990) J AgricFood Chem 38:1406

    Google Scholar 

  45. Sundaram KMS, Campbell R, Sloane L, Studens J (1995) Crop Prot 14:415

    CAS  Google Scholar 

  46. Hull CJ, Dultton WR, Switzen BS (1993) J Chromatogr 633:300

    CAS  Google Scholar 

  47. Jarvis AP, Johnson S, Morgan ED (1998) Pestic Sci 53:217

    CAS  Google Scholar 

  48. Johnson S, Morgan ED (1997) Phytochem Anal 8:228

    CAS  Google Scholar 

  49. Schaaf O, Jarvis AP, Van der Esch SA, Giagnacovo G, Oldham NJ (2000) J Chromatogr 886:89

    CAS  Google Scholar 

  50. Dai J, Yaylayan VA, Raghavan GS, Pare JR (1999) J Agric Food Chem 47:3738

    CAS  Google Scholar 

  51. Isman MB (1997) Phytoparasitica 25:339

    Google Scholar 

  52. Jacobson M (ed) (1988) The Neem Tree, Vol. 1. CRC, Boca Raton, Florida, p 101

    Google Scholar 

  53. Yakkundi SR, Thejavathi R, Ravindranath B (1995) J Agric Food Chem 43:2517

    CAS  Google Scholar 

  54. Sidhu OP, Behl HM (1996) Curr Sci 70:12

    Google Scholar 

  55. Ravishankar GA, Venkataraman LV (1990) Curr Sci 59:914

    Google Scholar 

  56. Endress R (ed) (1994) Plant Cell Biotechnology. Springer-Verlag, Berlin, pp 321–330

    Google Scholar 

  57. Alfermann AW, Petersen M (1995) Plant Cell Tiss Org Cult 43:199

    CAS  Google Scholar 

  58. Stockigt J, Obtiz P, Flakenhagen H, Lutterbach R, Endress R (1995) Plant Cell Tiss Org Cult 43:914

    Google Scholar 

  59. Dicosmo F, Misawa M (1995) Biotechnol Adv 13:425

    CAS  Google Scholar 

  60. Scragg AH (1997) Adv Biochem Eng Biotechnol 55:239

    CAS  Google Scholar 

  61. Zounos AK, Allan EJ, Mordue (Luntz) AJ (1999) Pestic Sci 55:486

    Google Scholar 

  62. Van der Esch SA, Giagnacovo G, Maccioni O, Vitali F (1993) Giorn Bot Ital 127:927

    Google Scholar 

  63. Ramesh K, Padhya MA (1980) Ind J Exp Biol 28:932

    Google Scholar 

  64. Thiagarajan M, Murali PM (1994) Ind Forester 6:500

    Google Scholar 

  65. Su WW, Hwang WI, Kin SY, Sagwa Y (1997) Plant Cell Tiss Org Cult 50:91

    Google Scholar 

  66. Eeswara JP, Stuchbury T, Allan EJ, Mordue (Luntz) AJ (1998) Plant Cell Rep 17:215

    CAS  Google Scholar 

  67. Murthy BNS, Saxena PK (1998) Plant Cell Rep 17:469

    CAS  Google Scholar 

  68. Chaturvedi R (2002) PhD Thesis, Delhi University, Delhi, India

    Google Scholar 

  69. Naina NS, Gupta PK, Mascarenhas AF (1989) Curr Sci 58:184

    Google Scholar 

  70. Keller H, Pierce L, Irina B, Dennis Ray P (1997) US patent 5698423

    Google Scholar 

  71. Prakash G, Emmannuel CSJK, Srivastava AK (2005) Biotechnol Bioprocess Eng 10:198

    CAS  Google Scholar 

  72. Prakash G, Srivastava AK (2005) Process Biochem 40:3795

    CAS  Google Scholar 

  73. Prakash G, Srivastava AK (2006) Biochem Eng 29:62

    CAS  Google Scholar 

  74. Dornenburg H, Knorr D (1997) Food Technol 51:50

    Google Scholar 

  75. Hampel D, Mosandl A, Wust M (2005) Phytochemistry 66:305

    CAS  Google Scholar 

  76. Srividya N, Devi BPS (1998) Indian J Plant Physiol 3:129

    CAS  Google Scholar 

  77. Siddiqui MA, Alam MM (1985) Neem Newslett 2:43

    Google Scholar 

  78. Mishra AS, Rao GP (1988) Phytophylactica 20:93

    Google Scholar 

  79. Venkateshwarlu B, Mukhopadhyay K (1999) Curr Sci 76:626

    Google Scholar 

  80. Wysokinska H, Chmiel A (1997) Acta Biotechnol 17:131

    CAS  Google Scholar 

  81. Payne GF, Bringi V, Prince C, Shuler ML (1992) Root cultures. In: Shuler ML (ed) Hanser Series in Biotechnology. Plant Cell and Tissue Culture in Liquid Systems. Hanser, Munich, p 225

    Google Scholar 

  82. Misawa M (1985) Adv BioChem Eng/Biotech 31:59

    CAS  Google Scholar 

  83. Deus B, Zenk MH (1982) Biotechnol Bioeng 24:1965

    CAS  Google Scholar 

  84. Dornenburg H, Knorr D (1995) Enzyme Microb Tech 17:674

    Google Scholar 

  85. Dougall DK (1985) Chemicals from plant cell cultures: yields. and variation. In: Zaitlin M, Day P, Hollaender A (eds) Biotechnology in Plant Science: Relevance of Agriculture in the Eighties. Academic Press, New York, p 627

    Google Scholar 

  86. Yamada Y, Sato F (1981) Phytochemistry 20:545

    CAS  Google Scholar 

  87. Buitelaar RM, Tramper J (1992) J Biotechnol 23:111

    CAS  Google Scholar 

  88. Rao R, Ravishankar S, Ravishankar GA (2002) Biotechnol Adv 20:101

    CAS  Google Scholar 

  89. Panda AK, Mishra S, Bisaria VS (1992) Biotechnol Bioeng 39:1043

    CAS  Google Scholar 

  90. Sakamoto K, Iida K, Sawamura K, Hajiro K, Yoshikawa T, Furuya T (1993) Phytochemistry 33:357

    CAS  Google Scholar 

  91. Sato K, Nakayama M, Shigeta J (1996) Plant Sci 113:91

    CAS  Google Scholar 

  92. Tabata M, Fujita Y (1985) Production of shikonin by plant cell cultures. In: Henke RR, Hughes KW, Constantin MP, Hollaender A (eds) Tissue Culture Forestry and Agriculture. Plenum, New York, p 117

    Google Scholar 

  93. Satdive RK, Fulzele DP, Eapen S (2007) J Biotechnol 128:281

    CAS  Google Scholar 

  94. Eilert U, Kurz WGW, Constable F (1985) J Plant Physiol 119:65

    CAS  Google Scholar 

  95. Bohlmann J, Gibraltarskaya E, Eilert U (1995) Plant Cell Tiss Org Cult 43:155

    CAS  Google Scholar 

  96. Radman R, Saez T, Bucke C, Keshavarz T (2003) Biotechnol Appl Biochem 37:91

    CAS  Google Scholar 

  97. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) Enzyme Microb Technol 26:252

    CAS  Google Scholar 

  98. Zhang CH, Xu HB (2001) Biotech Lett 23:189

    CAS  Google Scholar 

  99. Zhao J, Hu Q, Zhu WH (2001) Enzyme Microb Technol 28:673

    CAS  Google Scholar 

  100. Ciddi V, Kokate C (1997) Ind Drugs 34:354

    CAS  Google Scholar 

  101. Brodelius P, Nilsson K (1983) Eur J Appl Microbiol Biotechnol 17:275

    CAS  Google Scholar 

  102. Parr AJ, Robins RJ, Rhodes MCJ (1984) Plant Cell Rep 3:262

    CAS  Google Scholar 

  103. Endre BR (ed) (1994) Plant Biotechnology. Springer-Verlag, Berlin

    Google Scholar 

  104. Morimoto M, Nakamura K, Sano H (2006) Plant Biotechnol 23:123

    CAS  Google Scholar 

  105. MacRae S, Van Staden J (1993) Tree Physiol 12:411

    Google Scholar 

  106. Hatanaka T, Choi YE, Kusano T, Sano H (1999) Plant Cell Rep 19:106

    CAS  Google Scholar 

  107. Bakkali AT, Jaziri M, Foriers A, VanderHeyden Y, Vanhaelen M, Homès J (1997) Plant Cell Tiss Org Cult 51:83

    Google Scholar 

  108. Kendurkar SV, Naik VB, Nadgauda RJ (2006) Genetic transformation of some tropical trees, shrubs, and tree-like plants. In: Fladung M, Ewald D (eds) Tree Transgenesis. Springer, Berlin Heidelberg, p 67

    Google Scholar 

  109. Paradise EM, Kirby J, Withers ST, Keasling JD (2005) Metabolic engineering of Saccharomyces cerevisiae for the increased production of isoprenoids.” In: Tech: Metabolic Engineering of Yeast. Terpnet Conference 2005 (poster presentation)

    Google Scholar 

  110. Joshi M, Thengane S (1996) Potential application of in vitro methods for propagation of neem (Azadirachta indica A. Juss). In: Singh RP, Chari MS, Raheja AK, Kraus W (eds) Neem and Enviroment, Vol 2. Science Publishers, Lebanon, New Hampshire, p 967

    Google Scholar 

  111. Joarder A, Naderuzzaman R, Islam M, Hossain N, Joarder B, Biswas B (1993) Micropropagation of neem through axillary bud culture. In: Proceedings of the World Neem Conference, 24–28 February 1993, Bangalore, India, p 41

    Google Scholar 

  112. Sanyal M, Das A, Banerjee M, Datta PC (1981) Ind J Exp Biol 19:1067

    CAS  Google Scholar 

  113. Van der Esch SA, Maccioni O, Vitali F, Giagnacovo G, Pasqua G, Monacelli B (2001) Plant Biosyst 135:13

    Google Scholar 

  114. Rout GR (2005) J Forest Res 10:263

    CAS  Google Scholar 

  115. Shrikhande M, Thengane S, Mascarenhas A (1993) In Vitro Cell Dev Biol – Plant 29:38

    Google Scholar 

  116. Vorlop KD, Klein J (1987) Method Enzymol 135:259

    CAS  Google Scholar 

  117. Sundaram KMS, Curry J (1996) Chemosphere 32:649

    CAS  Google Scholar 

  118. Johnson S, Dureja P (2002) 37:75

    Google Scholar 

  119. Johnson S, Dureja P, Dhingra S (2003) J Environ Sci Health 38:451

    Google Scholar 

  120. Fujita Y, Hara, Y, Suga C, Morimoto T (1981) Plant Cell Rep 1:51

    Google Scholar 

  121. Fujita Y (1988) Shikonin production by plant (Lithospermum erythrorhizon) cell cultures. In: Bajaj YPS (ed) Medicinal and Aromatic Plants, vol. 4. Springer-Verlag, Berlin, Germany, p 225

    Google Scholar 

  122. Ushiyama K, Hibino K (1997) National Meeting of the American Chemistry Society 213, San Francisco, CA, USA

    Google Scholar 

  123. Zhong JJ (2002) J Biosci Bioeng 94:591

    CAS  Google Scholar 

  124. Kieran PM, MacLoughlin PF, Malone DM (1997) J Biotechnol 59:39

    CAS  Google Scholar 

  125. Tripathi L, Tripathi JN (2003) Trop J Pharm Res 2:243

    Google Scholar 

  126. Zhang YH, Zhong JJ (1997) Enzyme Microb Technol 21:59

    CAS  Google Scholar 

  127. Wu J, Ho KP (1999) Appl Biochem Biotechnol 82:17

    CAS  Google Scholar 

  128. Wang HQ, Yu JT, Zhong JJ (1999) Process Biochem 35:479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Srivastava, S., Srivastava, A. (2008). In Vitro Azadirachtin Production. In: Ramawat, K., Merillon, J. (eds) Bioactive Molecules and Medicinal Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74603-4_12

Download citation

Publish with us

Policies and ethics