Skip to main content

Secondary Metabolites in Soil Ecology

  • Chapter
Secondary Metabolites in Soil Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 14))

Interactions among organisms are central to understanding any ecosystem, perhaps with the exception of a short period when a newly created niche is colonized by its first inhabitants. Soil environment is not an exception, but biotic interactions dominating soil biology differ from those in other systems because of the dominating role of sessile organisms and the lack of autotrophy in soil (chemolithoautotrophs being an interesting but not significant exception). When chemical processes in soil are discussed, the traditional concept of food webs comes first to mind as a framework for the exchange of organic substances and flow of energy. Feeding, predation, degradation of macromolecular substrates and absorption of nutrients have dominated thinking about biogenic chemical processes in soil. The food web approach proved extremely fruitful in generating hypotheses and inspiring experimental approaches concerning the bulk transformation of organic matter, but it did not address phenomena related to chemical interactions which are more specific both on the chemical and on the taxonomical level and which cannot be adequately described in terms of energy flow and biomass transformation. These interactions involve compounds named secondary metabolites, which are not strictly needed for the survival and reproduction of their producers. Secondary metabolites are structurally highly diverse and each of them is produced only by a small number of species. They exert various biological effects, often at very low concentrations, and can be regarded as carriers of chemical communication among soil inhabitants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell EA (2001) Ecological biochemistry and its development. Phytochemistry 56:223–227

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. Chembiochem 3:619–627

    Article  PubMed  CAS  Google Scholar 

  • Challis GL, Hopwood DA (2003) Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. Proc Natl Acad Sci USA 100:14555–14561

    Article  PubMed  CAS  Google Scholar 

  • Czaran T, Hoekstra RF, Pagie L (2002) Chemical warfare between microbes promotes biodiversity. Proc Natl Acad Sci USA 99:786–790

    Article  PubMed  CAS  Google Scholar 

  • Davelos AL, Kinkel LL, Samac DA (2004) Spatial variation in frequency and intensity of antibiotic interactions among Streptomycetes from prairie soil. Appl Environ Microbiol 70:1051–1058

    Article  PubMed  CAS  Google Scholar 

  • Demain AL (1986) Regulation of secondary metabolism in fungi. Pure Appl Chem 58:219–226

    Article  CAS  Google Scholar 

  • Demain AL, Fang A (2000) The natural functions of secondary metabolites. In: Scheper T (ed) Advances in biochemical engineering/biotechnology, vol. 69. Springer Berlin, pp 1–39

    Google Scholar 

  • Eisen JA (2007) Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes. PLoS Biol 5:e82

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy S, Abul-Hajj YJ (1988) Microbial cleavage of zearalenone. Xenobiotica 18:365–371

    Article  PubMed  CAS  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (2000) The evolution of secondary metabolism—a unifying model. Mol Microbiol 37:989–994

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (2003) Natural products—a simple model to explain chemical diversity. Nat Prod Rep 20:382–391

    Article  PubMed  CAS  Google Scholar 

  • Frisvad JC, Thrane U, Filtenborg O (1998) In: Frisvad J (ed) Chemical fungal taxonomy. CRC, London, pp 289–321

    Google Scholar 

  • Frisvad JC, Smedsgaard J, Larsen TO (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Article  Google Scholar 

  • Gaffoor I, Brown DW, Plattner R, Proctor RH, Qi W, Trail F (2005) Functional analysis of the polyketide synthase genes in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 4:1926–1933

    Article  PubMed  CAS  Google Scholar 

  • Gäumann E (1954) Toxins and plant diseases. Endeavour 13:198–204

    Google Scholar 

  • Gershenzon J (1994) The cost of plant chemical defense against herbivory: a biochemical perspective. In: Bernays EA (ed) Insect–plant interactions, vol 5. CRC, Boca Raton, pp 105–173

    Google Scholar 

  • Glenn AE, Meredith FI, Morrison WH 3rd, Bacon CW (2003) Identification of intermediate and branch metabolites resulting from biotransformation of 2-benzoxazolinone by Fusarium verticillioides. Appl Environ Microbiol 69:3165–3169

    Article  PubMed  CAS  Google Scholar 

  • Gloer JB, Truckenbrod SM (1988) Interference competition among coprophilous fungi: production of (+) isoepoxydon by Poronia punctata. Appl Environ Microbiol 54:861–864

    PubMed  CAS  Google Scholar 

  • Gottlieb OR (1990) Phytochemicals: differentiation and function. Phytochemistry 29:1715–1724

    Article  CAS  Google Scholar 

  • Harborne JB (1999) Recent advances in chemical ecology. Nat Prod Rep 16:509–523

    Article  PubMed  CAS  Google Scholar 

  • Harrewijn P, Minks AK, Mollema C (2005) Evolution of plant volatile production in insect-plant relationships. Chemoecology 5:55–73

    Article  Google Scholar 

  • Humphrey AJ, Beale MH (2006) Strigol: biogenesis and physiological activity. Phytochemistry 67:636–640

    Article  PubMed  CAS  Google Scholar 

  • Janzen DH (1977) Why fruits rot, seeds mold, and meat spoils. Am Nat 980:691–713

    Article  Google Scholar 

  • Jermy T (1988) Can predation lead to narrow food specialization in phytophagous insects? Ecology 69:902–904

    Article  Google Scholar 

  • Jermy T (1998) The major transitions in evolution: what has driven them? Trends Ecol Evol 13:199–200

    Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  PubMed  CAS  Google Scholar 

  • Karlovsky P (1999) Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Nat Toxins 7:1–23

    Article  PubMed  CAS  Google Scholar 

  • Kossel A (1891) Ueber die Chemische Zusammensetzung der Zelle. Arch Physiol 181–186

    Google Scholar 

  • Lutz MP, Feichtinger G, Défago G, Duffy B (2003) Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl Environ Microbiol 69:3077–3084

    Article  PubMed  CAS  Google Scholar 

  • Mitchell-Olds T, Gershenzon J, Baldwin I, Boland W (1998) Chemical ecology in the molecular era. Trends Plant Sci 3:362–365

    Article  Google Scholar 

  • Morrissey JP, Osbourn AE (1999) Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol Mol Biol Rev 63:708–724

    PubMed  CAS  Google Scholar 

  • Mortensen GK, Strobel BW, Hansen HC (2003) Determination of zearalenone and ochratoxin A in soil. Anal Bioanal Chem 376:98–101

    PubMed  CAS  Google Scholar 

  • Nelson RR (1971) Hormonal involvement in sexual reproduction in the fungi, with special reference to F-2, a fungal estrogen. In: In Akai S, Ouchi S (eds) Morphological and biochemical events in plant-parasite interaction. Phytopathological Society of Japan, Tokyo, pp 181–200

    Google Scholar 

  • Notz R, Maurhofer M, Dubach H, Haas D, Défago G (2002) Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens cha0 in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 68:2229–2235

    Article  PubMed  CAS  Google Scholar 

  • Pedras MS, Hossain M (2006) Metabolism of crucifer phytoalexins in Sclerotinia sclerotiorum: detoxification of strongly antifungal compounds involves glucosylation. Org Biomol Chem 4:2581–2590

    Article  PubMed  CAS  Google Scholar 

  • Pedras MS, Suchy M (2005) Detoxification pathways of the phytoalexins brassilexin and sinalexin in Leptosphaeria maculans: isolation and synthesis of the elusive intermediate 3-formylindolyl-2-sulfonic acid. Org Biomol Chem 3:2002–2007

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter JE, Li K, Kravitz S, Heidelberg JF, Utterback T, Rogers YH, Falcón LI, Souza V, Bonilla-Rosso G, Eguiarte LE, Karl DM, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari MR, Strausberg RL, Nealson K, Friedman R, Frazier M, Venter JC (2007) The Sorcerer II global ocean sampling expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biol 5:e77

    Article  PubMed  CAS  Google Scholar 

  • Schenck S, Stotzky G (1975) Effect on microorganisms of volatile compounds released from germinating seeds. Can J Microbiol 21:1622–1634

    Article  PubMed  CAS  Google Scholar 

  • Seo JA, Guan Y, Yu JH (2006) FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 172:1535–1544

    Article  PubMed  CAS  Google Scholar 

  • Sirenko LA, Malyarevskaya AY, Birger T, Kirpenko YA (1979) Ecological metabolites. In: Krasnov EV (ed) Vzaimodeistne vodoi zhiuym veshchestuom, vol 2. Izdania, Moscow, pp 48–56

    Google Scholar 

  • Smedsgaard J, Nielsen J (2005) Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. J Exp Bot 56:273–286

    Article  PubMed  CAS  Google Scholar 

  • Smith PM (1976) The chemotaxonomy of plants. Arnold, London

    Google Scholar 

  • Sonnenbichler J, Bliestle IM, Peipp H, Holdenrieder O (1989) Secondary fungal metabolites and their biological activities, I. Isolation of antibiotic compounds from cultures of Heterobasidion annosum synthesized in the presence of antagonistic fungi or host plant cells. Biol Chem Hoppe Seyler 370:1295–1303

    PubMed  CAS  Google Scholar 

  • Sonnenbichler J, Peipp H, Dietrich J (1993) Secondary fungal metabolites and their biological activities, III. Further metabolites from dual cultures of the antagonistic basidiomycetes Heterobasidion annosum and Gloeophyllum abietinum. Biol Chem Hoppe Seyler 374:467–473

    PubMed  CAS  Google Scholar 

  • Strauss SY, Rudgers JA, Lau JA, Irwin RE (2002) Direct and ecological costs of resistance to herbivory. Trends Ecol Evol 17:278–285

    Article  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Röse US, Schnitzler JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  PubMed  CAS  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Utermark J, Karlovsky P (2007) Role of zearalenone lactonase in protection of Gliocladium roseum from fungitoxic effects of the mycotoxin zearalenone. Appl Environ Microbiol 73:637–642

    Article  PubMed  CAS  Google Scholar 

  • Weissbecker B, Holighaus G, Schutz S (2004) Gas chromatography with mass spectrometric and electroantennographic detection: analysis of wood odorants by direct coupling of insect olfaction and mass spectrometry. J Chromatogr A 1056:209–216

    PubMed  CAS  Google Scholar 

  • Windels CE, Mirocha CJ, Abbas HK, Xie W (1989) Perithecium production in Fusarium graminearum populations and lack of correlation with zearalenone production. Mycology 81:272–277

    Article  CAS  Google Scholar 

  • Wolf JC, Mirocha CJ (1973) Regulation of sexual reproduction in Gibberella zeae (Fusarium roseum “graminearum”) by F-2 (zearalenone). Can J Microbiol 19:725–734

    Article  PubMed  CAS  Google Scholar 

  • Wolf JC, Lieberman JR, Mirocha CJ (1972) Inhibition of F-2 (zearalenone) biosynthesis and perithecium production in Fusarium roseum ‘Graminearum’. Phytopathology 62:937–939

    Article  CAS  Google Scholar 

  • Wilkinson H, Ramaswamy A, Sim SC, Keller NP (2004) Increased conidiation associated with progression along the sterigmatocystin biosynthetic pathway. Mycologia 96:1190–1198

    Article  CAS  Google Scholar 

  • Zhou R, Rasooly R, Linz JE (2000) Isolation and analysis of fluP, a gene associated with hyphal growth and sporulation in Aspergillus parasiticus. Mol Gen Genet 264:514–520

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karlovsky, P. (2008). Secondary Metabolites in Soil Ecology. In: Karlovsky, P. (eds) Secondary Metabolites in Soil Ecology. Soil Biology, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74543-3_1

Download citation

Publish with us

Policies and ethics