Skip to main content

Transductive Rademacher Complexity and Its Applications

  • Conference paper
Learning Theory (COLT 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4539))

Included in the following conference series:

Abstract

We present data-dependent error bounds for transductive learning based on transductive Rademacher complexity. For specific algorithms we provide bounds on their Rademacher complexity based on their “unlabeled-labeled” decomposition. This decomposition technique applies to many current and practical graph-based algorithms. Finally, we present a new PAC-Bayesian bound for mixtures of transductive algorithms based on our Rademacher bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balcan, M.F., Blum, A.: An Augmented PAC Model for Semi-Supervised Learning (chapter 22). In: Chapelle, O., Schölkopf, B., Zien, A. (eds.) Semi-Supervised Learning, pp. 383–404. MIT Press, Cambridge (2006)

    Google Scholar 

  2. Bartlett, P., Bousquet, O., Mendelson, S.: Local Rademacher complexities. Annals of Probability 33(4), 1497–1537 (2005)

    MATH  MathSciNet  Google Scholar 

  3. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463–482 (2002)

    Article  MathSciNet  Google Scholar 

  4. Belkin, M., Matveeva, I., Niyogi, P.: Regularization and semi-supervised learning on large graphs. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 624–638. Springer, Heidelberg (2004)

    Google Scholar 

  5. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine Learning 56, 209–239 (2004)

    Article  MATH  Google Scholar 

  6. Blum, A., Langford, J.: PAC-MDL Bounds. In: COLT, pp. 344–357. Springer, Heidelberg (2003)

    Google Scholar 

  7. Bousquet, O., Elisseeff, A.: Stability and generalization. Journal of Machine Learning Research 2, 499–526 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. MIT Press, Cambridge, MA (2006), http://www.kyb.tuebingen.mpg.de/ssl-book

    Google Scholar 

  9. Derbeko, P., El-Yaniv, R., Meir, R.: Explicit learning curves for transduction and application to clustering and compression algorithms. Journal of Artificial Intelligence Research 22, 117–142 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Devroye, L., Gyorfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  11. El-Yaniv, R., Gerzon, L.: Effective transductive learning via objective model selection. Pattern Recognition Letters 26, 2104–2115 (2005)

    Article  Google Scholar 

  12. El-Yaniv, R., Pechyony, D.: Stable transductive learning. In: Lugosi, G., Simon, H.U. (eds.) Proceedings of the 19th Annual Conference on Learning Theory, pp. 35–49 (2006)

    Google Scholar 

  13. Hanneke, S.: An analysis of graph cut size for transductive learning. In: ICML, pp. 393–399 (2006)

    Google Scholar 

  14. Herbster, M., Pontil, M., Wainer, L.: Online learning over graphs. In: ICML, pp. 305–312 (2005)

    Google Scholar 

  15. Joachims, T.: Transductive learning via spectral graph partitioning. In: Proceedings of the 20th International Conference on Machine Learning, pp. 290–297 (2003)

    Google Scholar 

  16. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L.E., Jordan, M.: Learning the Kernel Matrix with Semidefinite Programming. Journal of Machine Learning Research 5, 27–72 (2004)

    Google Scholar 

  17. Meir, R., Zhang, T.: Generalization error bounds for Bayesian Mixture Algorithms. Journal of Machine Learning Research 4, 839–860 (2003)

    Article  MathSciNet  Google Scholar 

  18. Scholkopf, B., Herbrich, R., Smola, A.: A generalized representer theorem. In: Helmbold, D., Williamson, B. (eds.) COLT 2001 and EuroCOLT 2001. LNCS (LNAI), vol. 2111, pp. 416–426. Springer, Heidelberg (2001)

    Google Scholar 

  19. Vapnik, V., Chervonenkis, A.: The theory of pattern recognition. Moscow: Nauka (1974)

    Google Scholar 

  20. Vapnik, V.N.: Estimation of Dependences Based on Empirical Data. Springer, Heidelberg (1982)

    MATH  Google Scholar 

  21. Zhang, T., Ando, R.: Analysis of spectral kernel design based semi-supervised learning. In: NIPS, pp. 1601–1608 (2005)

    Google Scholar 

  22. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Scholkopf, B.: Learning with local and global consistency. In: NIPS, pp. 321–328 (2003)

    Google Scholar 

  23. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nader H. Bshouty Claudio Gentile

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

El-Yaniv, R., Pechyony, D. (2007). Transductive Rademacher Complexity and Its Applications. In: Bshouty, N.H., Gentile, C. (eds) Learning Theory. COLT 2007. Lecture Notes in Computer Science(), vol 4539. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72927-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72927-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72925-9

  • Online ISBN: 978-3-540-72927-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics