Skip to main content

Inorganic Nanotubes and Fullerene-Like Structures (IF)

  • Chapter
Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

Back in 1992 it was proposed that nanoparticles of layered compounds will beunstable against folding and will close up into fullerene-like structures (IF) andnanotubes. In the years that followed nanotubes and fullerene-like structureswere synthesized from numerous compounds with layered structure. Morerecently, crystalline and noncrystalline nanotubes of compounds with a 3D, i.e.,quasi-isotropic lattice have been intensively investigated. In view of their eminentapplications potential, much effort and substantial progress has been achieved inthe scaling-up of the synthesis of inorganic nanotubes and fullerene-likenanoparticles of WS2 and MoS2 and also other compounds. Early on it wassuggested that hollow nano-octahedra consisting of a few hundred MoS2moieties make the true analogs of C60, etc. This notion has been advancedconsiderably in recent years through a combined experimental–theoreticaleffort.Substantial progress has been accomplished in the use of such nanoparticlesfor tribological applications and lately for impact resilient nanocomposites.These tests indicated that IF-MoS2 and IF-WS2 are heading for large-scaleapplications in the automotive, machining, aerospace, electronics, defense, medicaland numerous other kinds of industries. A few products based on thesenanoparticles have been recently commercialized by “ApNano Materials, Inc”(“NanoMaterials, Ltd.”, see also www.apnano.com). Most recently, a manufacturingfacility for the commercialization of these nanomaterials has been erectedand sales of the product started. Novel applications of inorganic nanotubesand fullerene-like nanoparticles in the fields of catalysis; microelectronics;Li rechargeable batteries; medical and optoelectronics will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. Tenne: Inorganic nanotubes and fullerene-like nanoparticles (2006)

    Google Scholar 

  • M. Remskar: Inorganic nanotubes, Adv. Mater. 16, 1497–1504 (2004)

    Google Scholar 

  • A. N. Enyashin, S. Gemming, G. Seifert: Simulation of Inorganic Nanotubes (Springer, Berlin, Heidelberg 2006)

    Google Scholar 

  • F. Cheng, J. Chen: Storage of hydrogen and lithium in inorganic nanotubes and nanowires, J. Mater. Res. 21, 2744–2757 (2006)

    Google Scholar 

  • C. N. R. Rao, M. Nath: Inorganic nanotubes, Dalton Trans. 1, 1–25 (2003)

    Google Scholar 

  • B. C. Satishkumar, A. Govindaraj, E. M. Vogl, L. Basumallick, C. N. R. Rao: Oxide nanotubes prepared using carbon nanotubes as templates, J. Mater. Res. 12, 604–606 (1997)

    Google Scholar 

  • M. E. Spahr, P. Bitterli, R. Nesper, M. Müller, F. Krumeich, H. U. Nissen: Redox-active nanotubes of vanadium oxide, Angew. Chem. Int. Ed. Engl. 37, 1263–1265 (1998)

    Google Scholar 

  • G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng: Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702–3704 (2001)

    Google Scholar 

  • V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, M. Aucouturier: Structure and physicochemistry of anodic oxide films on titanium and {TA6V} alloy, Surf. Interface Anal. 27, 629–637 (1999)

    Google Scholar 

  • D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey: Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res 16, 3331–3334 (2001)

    Google Scholar 

  • R. Beranek, H. Hildebrand, P. Schmuki: Self-organized porous titanium oxide prepared in {H_2SO_4/HF} electrolytes, Electrochem. Solid-State Lett. 6, B12–B14 (2003)

    Google Scholar 

  • G. Seifert, T. Köhler, R. Tenne: Stability of metal chalcogenide nanotubes, J. Phys. Chem. B 106, 2497–2501 (2002)

    Google Scholar 

  • R. Tenne, L. Margulis, M. Genut, G. Hodes: Polyhedral and cylindrical structures of {Tungsten} disulphide, Nature 360, 444–445 (1992)

    Google Scholar 

  • L. Margulis, G. Salitra, R. Tenne, M. Talianker: Nested fullerene-like structures, Nature 365, 113–114 (1993)

    Google Scholar 

  • Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne: High rate gas phase growth of {MoS}2 nested inorganic fullerene-like and nanotubes, Science 267, 222–225 (1995)

    Google Scholar 

  • A. Rubio, J. L. Corkill, M. L. Cohen: Theory of graphitic boron nitride nanotubes, Phys. Rev. B 49, 5081–5084 (1994)

    Google Scholar 

  • N. G. Chopra, J. Luyken, K. Cherry, V. H. Crespi, M. L. Cohen, S. G. Louie, A. Zettl: Boron-nitride nanotubes, Science 269, 966–967 (1995)

    Google Scholar 

  • E. J. M. Hamilton, S. E. Dolan, C. M. Mann, H. O. Colijn, C. A. McDonald, S. G. Shore: Science 260, 659 (1993)

    Google Scholar 

  • F. Jensen, H. Toftlund: Structure and stablitity of {C}24 and {B}12{N}12 isomers, Chem. Phys. Lett. 201, 95–98 (1993)

    Google Scholar 

  • O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, T. Sato: Formation of small single-layer and nested {BN} cages under electron irradiation of nanotubes and bulk material, Appl. Phys. A 67, 107–111 (1998)

    Google Scholar 

  • R. R. Chianelli, E. B. Prestridge, T. A. Pecorano, J. P. DeNeufville: Molybdenum disuflide in the poorly crystalline ``rag'' structure, Science 203, 1105–1107 (1979)

    Google Scholar 

  • J. V. Sanders: High-resolution electron microscopy of some catalytic particles, Chem. Scr. 14, 141–145 (1979)

    Google Scholar 

  • J. V. Sanders: Structure of catalytic particles, Ultramicroscopy 20, 33–37 (1986)

    Google Scholar 

  • L. Vayssieres, K. Keis, A. Hagfeldt, S.-E. Lindquist: Three-dimensional array of highly oriented crystalline {ZnO} microtubes, Chem. Mater. 13, 4395–4398 (2001)

    Google Scholar 

  • Y. Sun, G. M. Fuge, N. A. Fox, D. J. Riley, M. N. R. Ashfold: Synthesis of aligned arrays of ultrathin {ZnO} nanotubes on a {Si} wafer coated with a thin {ZnO} film, Adv. Mater. 17, 2477–2481 (2005)

    Google Scholar 

  • J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang: Single-crystal gallium nitride nanotubes, Nature 422, 599–602 (2003)

    Google Scholar 

  • Y. Li, Y. Bando, D. Golberg: Single-crystalline {In2O3} nanotubes filled with {In}, Adv. Mater. 15, 581–585 (2003)

    Google Scholar 

  • R. Tenne, A. Zettl: Nanotubes from inorganic materials, in M. S. Dresselhaus, P. Avouris (Eds.): Carbon Nanotubes, Top. Appl. Phys. 80 (Springer, Berlin, Heidelberg 2000) pp. 81–112

    Google Scholar 

  • N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, M. Naito, T. Kanki: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water, Chem. Phys. Lett. 368, 331–337 (2003)

    Google Scholar 

  • J. J. Hu, J. S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like {MoS}2 nanoparticles investigated using lateral force microscopy ({LFM}), Tribol. Lett. 18, 173–180 (2005)

    Google Scholar 

  • D. M. D. J. Singh, T. Pradeep, J. Bhattacharjee, U. V. Waghmare: Novel cage clusters of {MoS2} in the gas phase, J. Phys. Chem. A 109, 7339–7342 (2005)

    Google Scholar 

  • R. Sen, A. Govindaraj, K. Suenaga, S. Suzuki, H. Kataura, S. Iijima, Y. Achiba: Encapsulated and hollow closed-cage structures of {WS2} and {MoS2} prepared by laser ablation at 450–\unit{1050}{\celsius}, Chem. Phys. Lett. 340, 242–248 (2001)

    Google Scholar 

  • P. A. Parilla, A. C. Dillon, B. A. Parkinson, K. M. Jones, J. Alleman, G. Riker, D. S. Ginley, M. J. Heben: Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization, J. Phys. Chem. B 108, 6197–6207 (2004)

    Google Scholar 

  • A. N. Enyashin, S. Gemming, M. Bar-Sadan, R. Popovitz-Biro, S. Y. Hong, Y. Prior, R. Tenne, G. Seifert: Structure and stability of molybdenum sulfide fullerenes, Angew. Chem. Intl. Ed. 46, 623–627 (2007)

    Google Scholar 

  • C. Ducati, E. Barborini, S. Vinati, P. Milani, P. A. Midgley: Titanium fullerenoid oxides, Appl. Phys. Lett. 87, 201906 (2005)

    Google Scholar 

  • A. Albu-Yaron, T. Arad, R. Popovitz-Biro, M. Bar-Sadan, Y. Prior, M. Jansen, R. Tenne: Closed-cage (fullerene-like) structures of {Cs2O}, Angew. Chem. Intl. Ed. 44, 4169–4172 (2005)

    Google Scholar 

  • A. Albu-Yaron, T. Arad, R. Tenne, M. Levy, R. Popovitz-Biro, J. M. Gordon, D. Feuermann, E. A. Katz, M. Jansen, C. Mühle: Synthesis of fullerene-like {Cs2O} nanoparticles by concentrated sunlight, Adv. Mater. 18, 2993–2996 (2006)

    Google Scholar 

  • M. J. Yacaman, H. Lopez, P. Santiago, D. H. Galvan, I. L. Garzon, A. Reyes: Studies of {{MoS2}} structures produced by electron irradiation, Appl. Phys. Lett. 69, 1065–1067 (1996)

    Google Scholar 

  • R. Popovitz-Biro, A. Twersky, Y. R. Hacohen, R. Tenne: Nanoparticles of {CdCl2} with closed cage structure, Isr. J. Chem. 41, 7–14 (2001)

    Google Scholar 

  • R. Popovitz-Biro, N. Sallacan, R. Tenne: {CdI2} nanoparticles with closed-cage (fullerene-like) structures, J. Mater. Chem. 13, 1631–1634 (2003)

    Google Scholar 

  • Y. Prior, R. Tenne, M. Bar-Sadan, R. Popovitz-Biro: Closed-cage (fullerene-like) structures of {NiBr2}, Mater. Res. Bull. 41, 2137–2146 (2006)

    Google Scholar 

  • T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara: Formation of titanium oxide nanotube, Langmuir 14, 3160–3163 (1998)

    Google Scholar 

  • G. H. Du, Q. Chen, R. C. Che, Z. Y. Yuan, L. M. Peng: Preparation and structure analysis of titanium oxide nanotubes, Appl. Phys. Lett. 79, 3702–3704 (2001)

    Google Scholar 

  • S. Zhang, L.-M. Peng, Q. Chen, G. H. Du, G. Dawson, W. Z. Zhou: Formation mechanism of {H2Ti}3{O7} nanotubes, Phys. Rev. Lett. 91, 256103 (2003)

    Google Scholar 

  • H. Deng, J. Wang, Q. Peng, X. Wang, Y. Li: Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes, Chem. Eur. J. 11, 6519–6524 (2005)

    Google Scholar 

  • D. Chen, K. Tang, Z. Liang, Y. Liu, H. Zheng: Fabrication of {PbCrO_4} nanostructures: {From} nanotubes to nanorods, Nanotechnology 16, 2619–2624 (2005)

    Google Scholar 

  • S. V. Krivovichev, V. Kahlenberg, R. Kaindl, E. Mersdorf, I. G. Tananaev, B. F. Myasoedov: Nanoscale tubules in uranyl selenates, Angew. Chem. Int. Ed. 44, 1134–1136 (2005)

    Google Scholar 

  • Z. Yin, Y. Sakamoto, J. Yu, S. Sun, O. Terasaki, R. Xu: Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system, J. Am. Chem. Soc. 126, 8882–8883 (2004)

    Google Scholar 

  • A. Ghicov, S. Aldabergenova, H. Tsuchyia, P. Schmuki: {TiO2}–{Nb2O}5 nanotubes with electrochemically tunable morphologies, Angew. Chem. Intl. Ed. 45, 6993–6996 (2006)

    Google Scholar 

  • S. Chou, F. Cheng, J. Chen: Electrochemical deposition of {Ni(OH)}2 and {Fe}-doped {Ni(OH)}2 tubes, Eur. J. Inorg. Chem. pp. 4035–4039 (2005)

    Google Scholar 

  • S. J. Son, S. B. Lee: Controlled gold nanoparticle diffusion in nanotubes: {Platfom} of partial functionalization and gold capping, J. Am. Chem. Soc. 128, 15974–15975 (2006)

    Google Scholar 

  • C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu: Design and tailoring of the nanotubular arrayed architecture of hydrous {RuO2} for next generation supercapacitors, Nano Lett. 6, 2690–2695 (2006)

    Google Scholar 

  • B. A. Hernandez-Sanchez, K.-S. Chang, M. T. Scancella, J. L. Burris, S. Kohli, E. R. Fisher, P. K. Dorhout: Examination of size-induced ferroelectric phase transitions in template synthesized {PbTiO3} nanotubes and nanofibers, Chem. Mater. 17, 5909–5919 (2005)

    Google Scholar 

  • N. A. Dhas, K. S. Suslick: Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc. 127, 2368–2369 (2005)

    Google Scholar 

  • B. Yang, C. Li, H. Hu, X. Yang, Q. Li, Y. Qian: A room-temperature route to bismuth nanotube arrays, Eur. J. Inorg. Chem. pp. 3699–3702 (2003)

    Google Scholar 

  • C. Schuffenhauer, R. Popovitz-Biro, R. Tenne: Synthesis of {NbS2} nanoparticles with (nested) fullerene-like structure ({IF}), J. Mater. Chem. 12, 1587–1591 (2002)

    Google Scholar 

  • F. L. Deepak, A. Margolin, M. Bar-Sadan, R. Popovitz-Biro, R. Tenne: {{MoS2}} fullerene-like structures and nanotubes using the gas phase reaction with {MoCl5}, Nano 1, 167–180 (2006)

    Google Scholar 

  • X.-L. Li, J.-P. Ge, Y.-D. Li: Atmospheric pressure chemical vapor deposition: an alternative route to large-scale {{MoS2}} and {WS2 inorganic} fullerene-like nanostructures and nanoflowers, Chem. Eur. J. 10, 6163–6171 (2004)

    Google Scholar 

  • J. Etzkorn, H. A. Therese, F. Rocker, N. Zink, U. Kolb, W. Tremel: Metal-organic chemical vapor deposition synthesis of hollow inorganic-fullerene-type {{MoS2}} and {MoSe2} nanoparticles, Adv. Mater. 17, 2372–2375 (2005)

    Google Scholar 

  • J. Chen, S.-L. Li, Z.-L. Tao, F. Gao: Low-temperature synthesis of titanium disulfide nanotubes, Chem. Commun. pp. 980–981 (2003)

    Google Scholar 

  • J. Chen, Z. L. Tao, S. L. Li: Lithium intercalation in open-ended {TiS2} nanotubes, Angew. Chem. Intl. Ed. 42, 2147–2151 (2003)

    Google Scholar 

  • S. Bastide, D. Duphil, J.-P. Borra, C. Lévy-Clément: {WS2} closed nanoboxes synthesized by spray pyrolysis, Adv. Mater. 18, 106–109 (2006)

    Google Scholar 

  • D. J. Brooks, R. E. Douthwaite, R. Brydson, C. Calvert, M. G. Measures, A. Watson: Synthesis of inorganic fullerene ({MS2} {M=Zr,Hf and W}) phases using {H2S} and {N2}/{H2} microwave-induced plasmas, Nanotechnology 17, 1245–1250 (2006)

    Google Scholar 

  • C. D. Malliakas, M. G. Kanatzidis: Inorganic single wall nanotubes of {SbPS}4-x{Se}x (0<x<3) with tunable band gap, J. Am. Chem. Soc. 128, 6538–6539 (2006)

    Google Scholar 

  • M. Brorson, T. W. Hansen, C. J. H. Jacobsen: Rhenium{(IV)} sulfide nanotubes, J. Am. Chem. Soc. 124, 11582–11583 (2002)

    Google Scholar 

  • L.-W. Yin, Y. Bando, D. Golberg, M.-S. Li: Growth of single-crystal indium nitride nanotubes and nanowires by a controlled-carboridation reaction route, Adv. Mater. 16, 1833–1838 (2004)

    Google Scholar 

  • J. Zhan, Y. Bando, J. Hu, L. Yin, X. Yuan, T. Sekiguchi, D. Golberg: Hollow and polygonous microtubes of monocrystalline indium germanate, Angew. Chem. Int. Ed. 45, 228–231 (2006)

    Google Scholar 

  • H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Goesele: Monocrystalline spinel nanotube fabrication based on the {Kirkendall} effect, Nature Mater. 5, 627–631 (2006)

    Google Scholar 

  • H. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, U. Goesele, M. Zacharias: Single-crystalline {MgAl2O}4 spinel nanotubes using a reactive and removable {MgO} nanowire template, Nanotechnology 17, 5157–5162 (2006)

    Google Scholar 

  • Z. Yang, Y. Gu, L. Chen, L. Shi, J. Ma, Y. Qian: Preparation of {Mn5Si}3 nanocages and nanotubes by molten salt flux, Solid State Commun. 130, 347–351 (2004)

    Google Scholar 

  • J. A. Jaszczak: Mesomolecules: From Molecules to Materials, vol. 1 (Chapman & Hall 1995)

    Google Scholar 

  • G. G. Tibbetts: Why are carbon filaments tubular, J. Cryst. Growth 66, 632–638 (1983)

    Google Scholar 

  • G. Seifert, T. Frauenheim: On the stability of non carbon nanotubes, J. Korean Phys. Soc. 37, 89–92 (2000)

    Google Scholar 

  • V. V. Ivanovskaya, G. Seifert: Tubular structures of titanium disulfide {TiS_2}, Solid State Commun. 130, 175–180 (2004)

    Google Scholar 

  • T. Köhler, T. Frauenheim, Z. Hajnal, G. Seifert: Tubular structures of {GaS}, Phys. Rev. B 69, 193403 (2004)

    Google Scholar 

  • G. Seifert, H. Terrones, M. Terrones, G. Jungnickel, T. Frauenheim: Structure and electronic properties of {{MoS2}} nanotubes, Phys. Rev. Lett. 85, 146–149 (2000)

    Google Scholar 

  • I. Milosevi\'c, T. Vukovi\'c, M. Damnjanovi\'c, B. Nikoli\'c: Symmetry based properties of the transition metal dichalcogenide nanotubes, Eur. Phys. J. B 17, 707–712 (2000)

    Google Scholar 

  • C. C. Han, M. Y. Bai, J. T. Lee: A new and easy method for making {Ni} and {Cu} microtubules and their regularly assembled structures, Chem. Mater. 13, 4260–4268 (2001)

    Google Scholar 

  • M. Remskar, A. Mrzel, F. Levy: Perspectives of fullerene nanotechnology, in E. Osawa (Ed.): International Fullerenes Workshop (Kluwer, Dordrecht, Boston, London 2001)

    Google Scholar 

  • M. Virsek, A. Jesih, I. Milosevic, M. Damnjanovic, M. Remskar: Raman scattering of the {MoS_2} and {WS_2} single nanotubes, Surf. Sci. 601, 2868–2872 (2007)

    Google Scholar 

  • M. Remskar, Z. Skraba, P. Stadelmann, F. Levy: Structural stabilization of new compounds: {MoS_2} and {WS_2} micro- and nanotubes alloyed with gold and silver, Adv. Mater. 12, 814–818 (2000)

    Google Scholar 

  • A. Mrzel, M. Remskar, D. Mihailovic: New organic-inorganic crystals grown by self-arrangement of {C}-70, Synth. Met. 135–136, 725–726 (2003)

    Google Scholar 

  • Y. Q. Zhu, W. K. Hsu, S. Firth, M. Terrones, R. J. H. Clark, H. W. Kroto, D. R. M. Walton: Nb-doped {WS_2} nanotubes, Chem. Phys. Lett 342, 15–21 (2001)

    Google Scholar 

  • M. Remskar, A. Mrzel, A. Jesih, F. Lévy: Metal-alloyed {NbS_2} nanotubes synthesized by the self-assembly of nanoparticles, Adv. Mater. 14, 680–684 (2002)

    Google Scholar 

  • M. I. Mendelev, D. J. Srolovitz, S. A. Safran, R. Tenne: Equilibrium structure of multilayer van der {Waals} films and nanotubes, Phys. Rev. B 65, 075402 (2002)

    Google Scholar 

  • S. B. Fagan, R. J. Baierle, R. Mota, A. J. da Silva, A. Fazzio: Ab initio calculations for a hypothetical material: Silicon nanotubes, Phys. Rev. B 61, 9994–9996 (2000)

    Google Scholar 

  • R. Q. Zhang, S. T. Lee, C.-K. Law, W. K. Li, B. K. Teo: Silicon nanotubes: Why not?, Chem. Phys. Lett. 364, 251–258 (2002)

    Google Scholar 

  • M. Zhang, Y. H. Kan, Q. J. Zang, Z. M. Su, R. S. Wang: Why silicon nanotubes stably exist in armchair structure?, Chem. Phys. Lett. 379, 81–86 (2003)

    Google Scholar 

  • G. Seifert, T. Köhler, H. M. Urbassek, E. Hernandez, T. Frauenheim: Tubular structures of silicon, Phys. Rev. B 63, 193409 (2001)

    Google Scholar 

  • G. Seifert, T. Köhler, Z. Hajnal, T. Frauenheim: Tubular structures of germanium, Solid State Commun. 119, 653–657 (2001)

    Google Scholar 

  • S. Gemming, G. Seifert: Nanotube bundles from calcium disilicide: A density functional theory study, Phys. Rev. B 68, 075416 (2003)

    Google Scholar 

  • G. Seifert, E. Hernandez: Theoretical prediction of phosphorus nanotubes, Chem. Phys. Lett. 318, 355–360 (2000)

    Google Scholar 

  • C. Su, H.-T. Liu, J.-M. Li: Bismuth nanotubes: {Potential} semiconducting nanomaterials, Nanotechnology 13, 746–749 (2002)

    Google Scholar 

  • Y. Li, J. Wang, Z. Deng, Y. Wu, X. Sun, D. Yu, P. Yang: Bismuth nanotubes: {A} rational low-temperature synthetic route, J. Am. Chem. Soc. 123, 9904–9905 (2001)

    Google Scholar 

  • I. Boustani, A. Quandt, E. Hernandez, A. Rubio: New boron based nano­structured materials, J. Chem. Phys. 110, 3176–3185 (1999)

    Google Scholar 

  • J. Kunstmann, A. Quandt: Constricted boron nanotubes, Chem. Phys. Lett. 402, 21–26 (2005)

    Google Scholar 

  • L. A. Chernozatonskii: Diboride bifullerenes and binanotubes, JETP Lett. 74, 335–339 (2001)

    Google Scholar 

  • A. Quandt, A. Y. Liu, I. Boustani: Density-functional calculations for prototype metal-boron nanotubes, Phys. Rev. B 64, 125422 (2001)

    Google Scholar 

  • V. V. Ivanovskaya, A. N. Enyashin, A. A. Sofronov, Y. N. Makurin, N. I. Medvedeva, A. L. Ivanovskii: Quantum chemical simulation of the electronic structure and chemical bonding in (6,6), (11,11) and (20,0)-like metal-boron nanotubes, J. Mol. Struct. 625, 9–16 (2003)

    Google Scholar 

  • S. Guerini, P. Piquini: Theoretical investigation of {TiB_2} nanotubes, Microelectron. J. 34, 495 (2003)

    Google Scholar 

  • W. H. Moon, H. J. Hwang: Molecular-dynamics simulation of structure and thermal behaviour of boron nitride nanotubes, Nanotechnology 15, 431–434 (2004)

    Google Scholar 

  • T. Dumitrica, H. F. Bettinger, G. E. Scuseria, B. I. Yakobson: Thermodynamics of yield in boron nitride nanotubes, Phys. Rev. B 68, 085412 (2003)

    Google Scholar 

  • M. Zhao, Y. Xia, D. Zhang, L. M. Mei: Stability and electronic structure of {AlN} nanotubes, Phys. Rev. B 68, 235415 (2003)

    Google Scholar 

  • M. Zhao, Y. Xia, Z. Tan, X. D. Liu, F. Li, B. D. Huang, Y. J. Ji, L. M. Mei: Strain energy and thermal stability of single-walled aluminum nitride nanotubes from first-principles calculations, Chem. Phys. Lett. 389, 160–164 (2004)

    Google Scholar 

  • J. W. Kang, H. J. Hwang, K. O. Song, W. Y. Choi, K. R. Byun, O. K. Kwon, J. H. Lee, W. W. Kim: Structures, nanomechanics, and disintegration of single-walled gan nanotubes: Atomistic simulations, J. Korean Phys. Soc. 43, 372–380 (2003)

    Google Scholar 

  • Y.-R. Jeng, P.-C. Tsai, T. H. Fang: Molecular dynamics investigation of the mechanical properties of gallium nitride nanotubes under tension and fatigue, Nanotechnology 15, 1737–1744 (2004)

    Google Scholar 

  • V. V. Ivanovskaya, A. N. Enyashin, A. L. Ivanovskii: Nanotubes and fullerene-like molecules based on {TiO_2} and {ZrS_2}: Electronic structure and chemical bond, Russian J. Inorg. Chem. 49, 244–251 (2004)

    Google Scholar 

  • A. N. Enyashin, G. Seifert: Structure, stability and electronic properties of {TiO_2} nanostructures, Phys. Stat. Sol. B 242, 1361–1370 (2005)

    Google Scholar 

  • V. V. Ivanovskaya, A. N. Enyashin, A. A. Sofronov, Y. N. Makurin, N. I. Medvedeva, A. L. Ivanovskii: Electronic properties of single-walled {V_2O_5} nanotubes, Solid State Commun. 126, 489–493 (2003)

    Google Scholar 

  • G. Seifert, T. Frauenheim, T. Köhler, H. M. Urbassek: Tubular structures of siloxenes, Phys. Stat. Sol. B 225, 393–399 (2001)

    Google Scholar 

  • Y. R. Hacohen, R. Popovitz-Biro, Y. Prior, S. Gemming, G. Seifert, R. Tenne: Synthesis of {NiCl_2} nanotubes and fullerene-like structures by laser ablation: {Theoretical} considerations and comparison with {MoS_2} nanotubes, Phys. Chem. Chem. Phys. 5, 1644–1651 (2003)

    Google Scholar 

  • V. V. Ivanovskaya, A. N. Enyashin, N. I. Medvedeva, A. L. Ivanovskii: Electronic properties of {NiCl2} tubular nanostructures URL: cond-mat/0304230 (2003)

    Google Scholar 

  • I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, R. Tenne: Mechanical behavior of {WS2} nanotubes, J. Mater. Res. 19, 454–459 (2004)

    Google Scholar 

  • I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Kanevsky, H. D. Wagner, R. Tenne: On the mechanical behavior of {WS_2} nanotubes under axial tension and compression, Proc. Natl. Acad. Sci. USA 103, 523–528 (2006)

    Google Scholar 

  • I. Kaplan-Ashiri, S. R. Cohen, N. Apter, Y. Wang, G. Seifert, H. D. Wagner, R. Tenne: J. Phys. Chem. C 111, 8432 (2007)

    Google Scholar 

  • Y. Wang, I. Kaplan-Ashiri, H. D. Wagner, R. Tenne, L.-M. Peng: unpublished

    Google Scholar 

  • J. L. Feldman: Elastic constants of {2H-MoS_2} and {2H-NBSe_2} extracted from measured dispersion curves and linear compressibilities, J. Phys. Chem. Sol. 37, 1141–1144 (1976)

    Google Scholar 

  • A. Kis, D. Mihailovic, M. Remskar, A. Mrzel, A. Jesih, I. Piwonski, A. J. Kulik, W. Benoit, L. Forro: Shear and {Young's} moduli of {MoS_2} nanotube ropes, Adv. Mater. 15, 733–736 (2003)

    Google Scholar 

  • L. Scheffer, R. Rosentzveig, A. Margolin, R. Popovitz-Biro, G. Seifert, S. R. Cohen, R. Tenne: Scanning tunneling microscopy study of {WS_2} nanotubes, Phys. Chem. Chem. Phys. 4, 2095–2098 (2002)

    Google Scholar 

  • O. Ponomarenko, M. W. Radny, P. V. Smith, G. Seifert: Properties of boron carbide nanotubes: Density-functional-based tight-binding calculations, Phys. Rev. B 67, 125401 (2003)

    Google Scholar 

  • V. V. Ivanovskaya, T. Heine, S. Gemming, G. Seifert: Structure, stability and electronic properties of composite {Mo1-xNb_xS_2} nanotubes, Phys. Stat. Sol. B 243, 1757–1764 (2006)

    Google Scholar 

  • G. Seifert, H. Terrones, M. Terrones, T. Frauenheim: Novel {NbS_2} metallic nanotubes,, Solid State Commun. 115, 635–638 (2000)

    Google Scholar 

  • L. Qian, Z.-L. Dub, S.-Y. Yang, Z.-S. Jin: {Raman} study of titania nanotube by soft chemical process, J. Mol. Struct. 749, 103–107 (2005)

    Google Scholar 

  • D. V. Bavykin, S. N. Gordeev, A. V. Moskalenko, A. A. Lapkin, F. C. Walsh: Apparent two-dimensional behavior of {TiO2} nanotubes revealed by light absorption and luminescence, J. Phys. Chem. B 109, 8565–8569 (2005)

    Google Scholar 

  • L. Qian, Z.-S. Jin, S.-Y. Yang, Z.-L. Du, X.-R. Xu: Bright visible photoluminescence from nanotube titania grown by soft chemical process, Chem. Mater. 17, 5334–5338 (2005)

    Google Scholar 

  • X. Liu, C. Täschner, A. Leonhardt, M. H. Rümmeli, T. Pichler, T. Gemming, B. Büchner, M. Knupfer: Structural, optical and electronic properties of vanadium oxide nanotubes, Phys. Rev. B 72, 115407 (2005)

    Google Scholar 

  • J. Cao, J. Choi, J. L. Musfeldt, S. Lutta, M. S. Whittingham: Effect of sheet distance on the optical properties of vanadate nanotubes, Chem. Mater. 16, 731–736 (2004)

    Google Scholar 

  • W. Chen, L. Mai, J. Peng, Q. Xu, Q. Zhu: {Raman} spectroscopic study of vanadium oxide nanotubes, J. Solid State Chem. 177, 377–379 (2004)

    Google Scholar 

  • A. G. {Souza Filho}, O. P. Ferreira, E. J. G. Santos, J. {Mendes Filho}, O. L. Alves: {Raman} spectra in vanadate nanotubes, Nano Lett. 4, 2099–2104 (2004)

    Google Scholar 

  • K. P. Loh, H. Zhang, W. Z. Chen, W. Ji: Templated deposition of {{MoS2}} nanotubules using single source precursor and studies of their optical limiting properties, J. Phys. Chem. B 110, 1235–1239 (2006)

    Google Scholar 

  • P. M. Rafailov, C. Thomsen, K. Gartsman, I. Kaplan-Ashiri, R. Tenne: Orientation dependence of the polarizability of an individual {WS2} nanotube by resonant {Raman} spectroscopy, Phys. Rev. B 72, 205436 (2005)

    Google Scholar 

  • R. D. Luttrell, S. Brown, J. Cao, J. L. Musfeldt, R. Rosentsveig, R. Tenne: Dynamics of bulk versus nanoscale {WS2}: Local strain and charging effects, Phys. Rev. B 73, 035410 (2006)

    Google Scholar 

  • L. Rapoport, N. Fleischer, R. Tenne: Applications of {WS2} ({MoS}2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites, J. Mater. Chem. 15, 1782–1788 (2005)

    Google Scholar 

  • L. Joly-Pottuz, F. Dassenoy, M. Belin, B. Vacher, J. M. Martin, N. Fleischer: Ultralow-friction and wear properties of {IF}-{WS2} under boundary lubrication, Tribol. Lett. 18, 477–485 (2005)

    Google Scholar 

  • J. J. Hu, J. S. Zabinski: Nanotribology and lubrication mechanisms of inorganic fullerene-like {{MoS2}} nanoparticles investigated using lateral force microscopy ({LFM}), Tribol. Lett. 18, 173–180 (2005)

    Google Scholar 

  • W. X. Chen, Z. D. Xu, R. Tenne, R. Rosenstveig, W. L. Chen, H. Y. Gan, J. P. Tu: Wear and friction of {Ni-P} electroless composite coating including inorganic fullerene-like {WS2} nanoparticles, Adv. Eng. Mater. 4, 686–690 (2002)

    Google Scholar 

  • A. Katz, M. Redlich, L. Rapoport, H. D. Wagner, R. Tenne: Self-lubricating coatings containing fullerene-like {WS2} nanoparticles for orthodontic wires and other possible medical applications, Tribol. Lett. 21, 135–139 (2006)

    Google Scholar 

  • H. Friedman, O. Eidelman, Y. Feldman, A. Moshkovich, V. Perfiliev, L. Rapoport, H. Cohen, A. Yoffe, R. Tenne: Fabrication of self-lubricating cobalt coatings on metal surfaces, Nanotechnology 18, 115703 (2007)

    Google Scholar 

  • F. Dassenoy, L. Joly-Pottuz, J. M. Martin, D. Vrbanic, A. Mrzel, D. Mihailovic, W. Vogel, G. Montagnac: Tribological performances of {Mo6S}3{I6} nanowires, J. Eur. Ceram. Soc. 27, 915–919 (2007)

    Google Scholar 

  • H. Tsabari: Inorganic Fullerene-like {WS2} Nano-Spheres (IF-WS2), ({Batch No.HP6}) acute oral toxicity, acute toxic class method in the rat, final report, Harlan Biotech Israel (2005)

    Google Scholar 

  • I. Haist: Test for Sensitization (Local Lymph Node Assay {LLNA}) with Inorganic Fullerene-like {WS2} Nano-Spheres, Technical report, BSL Bioservice Project No. 052052 (2005)

    Google Scholar 

  • L. Joly-Pottuz, J. M. Martin, F. Dassenoy, M. Belin, G. Montagnac, B. Reynard, N. Fleischer: Pressure-induced exfoliation of inorganic fullerene-like {WS2} particles in a {Hertzian} contact, J. Appl. Phys. 99, 023524 (2006)

    Google Scholar 

  • Y. Q. Zhu, T. Sekine, Y. H. Li, M. W. Fay, Y. M. Zhao, C. H. P. Poa, W. X. Wang, R. Martin, P. D. Brown, N. Fleischer, R. Tenne: Shock-absorbing and failure mechanism of {WS2} and {{MoS2}} nanoparticles with fullerene-like structure under shockwave pressures, J. Am. Chem. Soc. 127, 16263–16272 (2005)

    Google Scholar 

  • J. Chen, S. L. Li, Z. L. Tao: Novel hydrogen storage properties of {{MoS2}} nanotubes, J. Alloys Compd. 356–357, 413–317 (2003)

    Google Scholar 

  • J. Chen, S. L. Li, Z. L. Tao, Y. T. Shen, C. X. Cui: Titanium disulfide nanotubes as hydrogen-storage materials, J. Am. Chem. Soc. 125, 5284–5285 (2003)

    Google Scholar 

  • R. Dominko, M. Gaberscek, D. Arcon, A. Mrzel, M. Remskar, D. Mihailovic, S. Pejovnik, J. Jamnik: Electrochemical preparation and characterization of {Li}z{MoS}2-x nanotubes, Electrochim. Acta 48, 3079–3084 (2003)

    Google Scholar 

  • H. A. Therese, F. Rocker, A. Reiber, J. Li, M. Stepputat, G. Glasser, U. Kolb, W. Tremel: {VS2} nanotubes containing organic-amine templates from the {NT-VO}x precursors and reversible copper intercalation in {NT}-{{VS}2}, Angew. Chem. Int. Ed. 44, 262–265 (2005)

    Google Scholar 

  • Y. Wang, J. Y. Lee, H. C. Zeng: Polycrystalline {SnO2} nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application, Chem. Mater. 17, 3899–3903 (2005)

    Google Scholar 

  • L. Krusin-Elbaum, D. M. Newns, H. Zeng, V. Derycke, J. Z. Sun, R. Sandstrom: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping, Nature 431, 672–676 (2004)

    Google Scholar 

  • G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes: Use of highly-ordered {TiO2} nanotube arrays in dye-sensitized solar cells, Nano Lett. 6, 215–218 (2006)

    Google Scholar 

  • K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank: Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented {TiO2} nanotubes arrays, Nano Lett. 7, 69–74 (2007)

    Google Scholar 

  • C. M. Ruan, M. Paulose, O. K. Vargese, C. A. Grimes: Enhanced photoelectrochemical-response in highly ordered {TiO2} nanotube-arrays anodized in boric acid containing electrolyte, Sol. Energy Mater. Sol. Cells 90, 1283–1295 (2006)

    Google Scholar 

  • G. K. Mor, M. A. Carvalho, O. K. Varghese, M. V. Pishko, C. A. Grimes: A room-temperature {TiO2}-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination, J. Mater. Res. 19, 628–634 (2004)

    Google Scholar 

  • A. Liu, M. Wei, I. Honma, H. Zhou: Biosensing properties of titanate-nanotube films: Selective detection of dopamine in the presence of ascorbate and uric acid, Adv. Funct. Mater. 16, 371–376 (2006)

    Google Scholar 

  • L. Qian, F. Teng, Z.-S. Jin, Z.-J. Zhang, T. Zhang, Y.-B. Hou, S.-Y. Yang, X.-R. Xu: Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid ({DNTA})-polymer nanocomposites, J. Phys. Chem. B 108, 13928–13931 (2004)

    Google Scholar 

  • H. Tokudome, M. Miyauchi: Electrochromism of titanate-based nanotubes, Angew. Chem. Int. Ed. 44, 1974–1977 (2005)

    Google Scholar 

  • J. Goldberger, R. Fan, P. Yang: Inorganic nanotubes: A novel platform for nanofluidics, Acc. Chem. Res. 39, 239–248 (2006)

    Google Scholar 

  • R. Chen, M. H. So, J. Yang, F. Deng, C. M. Chea, H. Sun: Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate, Chem. Commun. pp. 2265–2267 (2006)

    Google Scholar 

  • C. Zhi, Y. Bando, C. Tang, D. Golberg: Immobilization of proteins on {BN} nanotubes, J. Am. Chem. Soc. 127, 17144–17145 (2005)

    Google Scholar 

  • N. A. Dhas, K. S. Suslick: Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc. 127, 2368–2369 (2005)

    Google Scholar 

  • F. Cheng, X. Gou, J. Chen, Q. Xu: {Ni}/{{MoS2}} nanocomposites as the catalysts for hydrodesulfurization of thiophene and thiophene derivatives, Adv. Mater. 18, 2561–2564 (2006)

    Google Scholar 

  • S. Zhang, F. Cheng, Z. Tao, F. Gao, J. Chen: Removal of nickel ions from wastewater by {Mg(OH)2/MgO} nanostructures embedded in {Al2O}3 membranes, J. Alloys Compd. 426, 281–285 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenne, R., Remškar, M., Enyashin, A., Seifert, G. (2007). Inorganic Nanotubes and Fullerene-Like Structures (IF). In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_20

Download citation

Publish with us

Policies and ethics