Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 186))

Abstract

The mitogen-activated protein kinase (MAPK) pathway provides cells with the means to interpret external signal cues or conditions, and respond accordingly. This cascade regulates many cell functions such as differentiation, proliferation and migration. Through modulation of both the amplitude and duration of MAPK signalling, cells can control their responses to the multiple activators of the pathway. In addition, recent work has highlighted the importance of the cellular compartment from which the signalling occurs. Cells have developed intricate systems that enable them to localise MAPK components to specific subcellular domains in response to a particular stimulus. Consequently, different factors can activate the same kinase in separate locations. Crucial to this ability are molecular scaffolds, which act as signalling modules for MAPKs, confining them to the desired compartment. The participation of the MAPK network in fundamental physiological processes, such as cell proliferation and inflammation, and the derangement of the homeostasis that occurs in disease processes, renders MAPK a highly desirable target for therapeutic intervention. As we enhance our comprehension of scaffolds and other regulatory molecules, novel targets for drug design may be discovered that will afford selective and specific MAPK modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JM, Houston H, Allen J, Lints T, Harvey R (1992) The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization. Oncogene 7:611–618

    PubMed  CAS  Google Scholar 

  • Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93:1062–1074

    Article  PubMed  CAS  Google Scholar 

  • Alberola-Ila J, Hernandez-Hoyos G (2003) The Ras/MAPK cascade and the control of positive selection. Immunol Rev 191:79–96

    Article  PubMed  CAS  Google Scholar 

  • Arozarena I, Matallanas D, Berciano MT, Sanz-Moreno V, Calvo F, Munoz MT, Egea G, Lafarga M, Crespo P (2004) Activation of H-Ras in the endoplasmic reticulum by the RasGRF family guanine nucleotide exchange factors. Mol Cell Biol 24:1516–1530

    Article  PubMed  CAS  Google Scholar 

  • Ashwell JD (2006) The many paths to p38 mitogen-activated protein kinase activation in the immune system. Nat Rev Immunol 6:532–540

    Article  PubMed  CAS  Google Scholar 

  • Barr RK, Boehm I, Attwood PV, Watt PM, Bogoyevitch MA (2004) The critical features and the mechanism of inhibition of a kinase interaction motif-based peptide inhibitor of JNK. J Biol Chem 279:36327–36338

    Article  PubMed  CAS  Google Scholar 

  • Bivona TG, Perez De Castro I, Ahearn IM, Grana TM, Chiu VK, Lockyer PJ, Cullen PJ, Pellicer A, Cox AD, Philips MR (2003) Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1. Nature 424:694–698

    Article  PubMed  CAS  Google Scholar 

  • Bos JL (2005) Linking Rap to cell adhesion. Curr Opin Cell Biol 17:123–128

    Article  PubMed  CAS  Google Scholar 

  • Bourguignon LY, Gilad E, Rothman K, Peyrollier K (2005) Hyaluronan-CD44 interaction with IQGAP1 promotes Cdc42 and ERK signaling, leading to actin binding, Elk-1/estrogen receptor transcriptional activation, and ovarian cancer progression. J Biol Chem 280:11961–11972

    Article  PubMed  CAS  Google Scholar 

  • Briggs MW, Sacks DB (2003a) IQGAP1 as signal integrator: Ca2+, calmodulin, Cdc42 and the cytoskeleton. FEBS Lett 542:7–11

    Article  PubMed  CAS  Google Scholar 

  • Briggs MW, Sacks DB (2003b) IQGAP proteins are integral components of cytoskeletal regulation. EMBO reports 4:571–574

    Article  PubMed  CAS  Google Scholar 

  • Brown MD, Sacks DB (2006) IQGAP1 in cellular signaling: bridging the gap. Trends Cell Biol 16:242–249

    Article  PubMed  CAS  Google Scholar 

  • Buchanan FG, Gorden DL, Matta P, Shi Q, Matrisian LM, DuBois RN (2006) Role of beta-arrestin 1 in the metastatic progression of colorectal cancer. Proc Natl Acad Sci USA 103:1492–1497

    Article  PubMed  CAS  Google Scholar 

  • Burke P, Schooler K, Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12:1897–1910

    PubMed  CAS  Google Scholar 

  • Carozzi AJ, Roy S, Morrow IC, Pol A, Wyse B, Clyde-Smith J, Prior IA, Nixon SJ, Hancock JF, Parton RG (2002) Inhibition of lipid raft-dependent signaling by a dystrophy-associated mutant of caveolin-3. J Biol Chem 277:17944–17949

    Article  PubMed  CAS  Google Scholar 

  • Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4:299–309

    Article  PubMed  CAS  Google Scholar 

  • Chiu VK, Bivona T, Hach A, Sajous JB, Silletti J, Wiener H, Johnson RL 2nd, Cox AD, Philips MR (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350

    PubMed  CAS  Google Scholar 

  • Choy E, Chiu VK, Silletti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80

    Article  PubMed  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535

    Article  PubMed  CAS  Google Scholar 

  • Collisson EA, De A, Suzuki H, Gambhir SS, Kolodney MS (2003) Treatment of metastatic melanoma with an orally available inhibitor of the Ras-Raf-MAPK cascade. Cancer Res 63:5669–5673

    PubMed  CAS  Google Scholar 

  • Coutts AS, Murphy LC (1998) Elevated mitogen-activated protein kinase activity in estrogen-nonresponsive human breast cancer cells. Cancer Res 58:4071–4074

    PubMed  CAS  Google Scholar 

  • Darby S, Sahadevan K, Khan MM, Robson CN, Leung HY, Gnanapragasam VJ (2006) Loss of Sef (similar expression to FGF) expression is associated with high grade and metastatic prostate cancer. Oncogene 25:4122–4127

    Article  PubMed  CAS  Google Scholar 

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  • DeFeo D, Gonda MA, Young HA, Chang EH, Lowy DR, Scolnick EM, Ellis RW (1981) Analysis of two divergent rat genomic clones homologous to the transforming gene of Harvey murine sarcoma virus. Proc Natl Acad Sci USA 78:3328–3332

    Article  PubMed  CAS  Google Scholar 

  • Dumaz N, Hayward R, Martin J, Ogilvie L, Hedley D, Curtin JA, Bastian BC, Springer C, Marais R (2006) In melanoma, RAS mutations are accompanied by switching signaling from BRAF to CRAF and disrupted cyclic AMP signaling. Cancer Res 66:9483–9491

    Article  PubMed  CAS  Google Scholar 

  • Elion EA (2001) The Ste5p scaffold. J Cell Sci 114:3967–3978

    PubMed  CAS  Google Scholar 

  • Ellis RW, Defeo D, Shih TY, Gonda MA, Young HA, Tsuchida N, Lowy DR, Scolnick EM (1981) The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes. Nature 292:506–511

    Article  PubMed  CAS  Google Scholar 

  • Engel FB, Hsieh PC, Lee RT, Keating MT (2006) FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci USA 103:15546–15551

    Article  PubMed  CAS  Google Scholar 

  • Engelman JA, Zhang XL, Lisanti MP (1999) Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5 promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett 448:221–230

    Article  PubMed  CAS  Google Scholar 

  • Flaherty KT (2006) Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res 12:2366s–2370s

    Article  PubMed  CAS  Google Scholar 

  • Furthauer M, Lin W, Ang SL, Thisse B, Thisse C (2002) Sef is a feedback-induced antagonist of Ras/MAPK-mediated FGF signalling. Nat Cell Biol 4:170–174

    Article  PubMed  CAS  Google Scholar 

  • Fusello AM, Mandik-Nayak L, Shih F, Lewis RE, Allen PM, Shaw AS (2006) The MAPK scaffold kinase suppressor of Ras is involved in ERK activation by stress and proinflammatory cytokines and induction of arthritis. J Immunol 177:6152–6158

    PubMed  CAS  Google Scholar 

  • Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101:7618–7623

    Article  PubMed  CAS  Google Scholar 

  • Gioeli D, Mandell JW, Petroni GR, Frierson HF Jr, Weber MJ (1999) Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59:279–284

    PubMed  CAS  Google Scholar 

  • Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857

    Article  PubMed  CAS  Google Scholar 

  • Gustavsson J, Parpal S, Karlsson M, Ramsing C, Thorn H, Borg M, Lindroth M, Peterson KH, Magnusson KE, Stralfors P (1999) Localization of the insulin receptor in caveolae of adipocyte plasma membrane. FASEB J 13:1961–1971

    PubMed  CAS  Google Scholar 

  • Hancock JF (2003) Ras proteins: different signals from different locations. Nat Rev Mol Cell Biol 4:373–384

    Article  PubMed  CAS  Google Scholar 

  • Hancock JF (2006) Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol 7:456–462

    Article  PubMed  CAS  Google Scholar 

  • Hill CS, Wynne J, Treisman R (1995) The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170

    Article  PubMed  CAS  Google Scholar 

  • Howe CL, Mobley WC (2004) Signaling endosome hypothesis: A cellular mechanism for long distance communication. J Neurobiol 58:207–216

    Article  PubMed  Google Scholar 

  • Howe CL, Mobley WC (2005) Long-distance retrograde neurotrophic signaling. Curr Opin Neurobiol 15:40–48

    Article  PubMed  CAS  Google Scholar 

  • Howe CL, Valletta JS, Rusnak AS, Mobley WC (2001) NGF signaling from clathrin-coated vesicles: evidence that signaling endosomes serve as a platform for the Ras-MAPK pathway. Neuron 32:801–814

    Article  PubMed  CAS  Google Scholar 

  • Huang CS, Zhou J, Feng AK, Lynch CC, Klumperman J, DeArmond SJ, Mobley WC (1999) Nerve growth factor signaling in caveolae-like domains at the plasma membrane. J Biol Chem 274:36707–36714

    Article  PubMed  CAS  Google Scholar 

  • Jadeski L, Mataraza JM, Jeong HW, Li Z, Sacks DB (2008) IQGAPI stimulates proliferation and enhances tumourigenesis of human breast epithelial cells. J Biol Chem 283:1008–1017.

    Article  PubMed  CAS  Google Scholar 

  • James G, Goldstein JL, Brown MS (1996) Resistance of K-RasBV12 proteins to farnesyltransferase inhibitors in Rat1 cells. Proc Natl Acad Sci USA 93:4454–4458

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Sorkin A (2002) Coordinated traffic of Grb2 and Ras during epidermal growth factor receptor endocytosis visualized in living cells. Mol Biol Cell 13:1522–1535

    Article  PubMed  CAS  Google Scholar 

  • Kalb R (2005) The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 28:5–11

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Thorn H, Danielsson A, Stenkula KG, Ost A, Gustavsson J, Nystrom FH, Stralfors P (2004) Colocalization of insulin receptor and insulin receptor substrate-1 to caveolae in primary human adipocytes. Cholesterol depletion blocks insulin signalling for metabolic and mitogenic control. Eur J Biochem 271:2471–2479

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270: 1491–1494

    Article  PubMed  CAS  Google Scholar 

  • Kolch W (2005) Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6:827–837

    Article  PubMed  CAS  Google Scholar 

  • Kortum RL, Lewis RE (2004) The molecular scaffold KSR1 regulates the proliferative and oncogenic potential of cells. Mol Cell Biol 24:4407–4416

    Article  PubMed  CAS  Google Scholar 

  • Kranenburg O, Verlaan I, Moolenaar WH (1999) Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J Biol Chem 274:35301–35304

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Doody J, Massague J (1997) Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1. Nature 389:618–622

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Boehm J, Lee JC (2003) p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov 2:717–726

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla R, Zweifel LS, Glebova NO, Lonze BE, Valdez G, Ye H, Ginty DD (2004) A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118:243–255

    Article  PubMed  CAS  Google Scholar 

  • Labrecque L, Royal I, Surprenant DS, Patterson C, Gingras D, Beliveau R (2003) Regulation of vascular endothelial growth factor receptor-2 activity by caveolin-1 and plasma membrane cholesterol. Mol Biol Cell 14:334–347

    Article  PubMed  CAS  Google Scholar 

  • Lai WH, Cameron PH, Doherty JJ 2nd, Posner BI, Bergeron JJ (1989) Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization. J Cell Biol 109:2751–2760

    Article  PubMed  CAS  Google Scholar 

  • Lee SH, Lee JW, Soung YH, Kim SY, Nam SW, Park WS, Kim SH, Yoo NJ, Lee JY (2004) Colorectal tumors frequently express phosphorylated mitogen-activated protein kinase. APMIS 112:233–238

    Article  PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Whalen EJ (2004) Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 16:162–168

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Kim SH, Higgins JM, Brenner MB, Sacks DB (1999) IQGAP1 and calmodulin modulate E-cadherin function. J Biol Chem 274:37885–37892

    Article  PubMed  CAS  Google Scholar 

  • Li L, Li Z, Sacks DB (2003) Calmodulin regulates the transcriptional activity of estrogen receptors. Selective inhibition of calmodulin function in subcellular compartments. J Biol Chem 278:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Li Z, McNulty DE, Marler KJM, Lim L, Hall C, Annan RS, Sacks DB (2005) IQGAP1 promotes neurite outgrowth in a phosphorylation-dependent manner. J Biol Chem 280:13871–13878

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Ying Y, Ko YG, Anderson RG (1996) Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem 271:10299–10303

    Article  PubMed  CAS  Google Scholar 

  • Lockyer PJ, Kupzig S, Cullen PJ (2001) CAPRI regulates Ca(2+)-dependent inactivation of the Ras-MAPK pathway. Curr Biol 11:981–986

    Article  PubMed  CAS  Google Scholar 

  • Lozano J, Xing R, Cai Z, Jensen HL, Trempus C, Mark W, Cannon R, Kolesnick R (2003) Deficiency of kinase suppressor of Ras1 prevents oncogenic ras signaling in mice. Cancer Res 63:4232–4238

    PubMed  CAS  Google Scholar 

  • Marais R, Wynne J, Treisman R (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73:381–393

    Article  PubMed  CAS  Google Scholar 

  • Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

  • Mataraza JM, Briggs MW, Li Z, Entwistle A, Ridley AJ, Sacks DB (2003a) IQGAP1 promotes cell motility and invasion. J Biol Chem 278:41237–41245

    Article  PubMed  CAS  Google Scholar 

  • Mataraza JM, Briggs MW, Li Z, Frank R, Sacks DB (2003b) Identification and characterization of the Cdc42-binding site of IQGAP1. Biochem Biophys Res Commun 305:315–321

    Article  PubMed  CAS  Google Scholar 

  • Mataraza JM, Li Z, Jeong HW, Brown MD, Sacks DB (2007) Multiple proteins mediate IQGAP1-stimulated cell migration. Cell Signal 19:1857–1865

    Article  PubMed  CAS  Google Scholar 

  • Matheny SA, Chen C, Kortum RL, Razidlo GL, Lewis RE, White MA (2004) Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP. Nature 427:256–260

    Article  PubMed  CAS  Google Scholar 

  • Milella M, Precupanu CM, Gregorj C, Ricciardi MR, Petrucci MT, Kornblau SM, Tafuri A, Andreeff M (2005) Beyond single pathway inhibition: MEK inhibitors as a platform for the development of pharmacological combinations with synergistic anti-leukemic effects. Curr Pharm Des 11:2779–2795

    Article  PubMed  CAS  Google Scholar 

  • Mineo C, James GL, Smart EJ, Anderson RG (1996) Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J Biol Chem 271:11930–11935

    Article  PubMed  CAS  Google Scholar 

  • Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M, He HT (1998) Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J 17:5334–5348

    Article  PubMed  CAS  Google Scholar 

  • Mor A, Philips MR (2006) Compartmentalized Ras/MAPK signaling. Annu Rev Immunol 24:771–800

    Article  PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Kosik KS (1996) The pool of map kinase associated with microtubules is small but constitutively active. Mol Biol Cell 7:893–905

    PubMed  CAS  Google Scholar 

  • Morrison DK (2001) KSR: a MAPK scaffold of the Ras pathway? J Cell Sci 114:1609–1612

    PubMed  CAS  Google Scholar 

  • Morrison DK, Davis RJ (2003) Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19:91–118

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Cacace AM, Lyons WE, McGill CB, Morrison DK (2000) Identification of B-KSR1, a novel brain-specific isoform of KSR1 that functions in neuronal signaling. Mol Cell Biol 20:5529–5539

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Ory S, Copeland T, Piwnica-Worms H, Morrison DK (2001) C-TAK1 regulates Ras signaling by phosphorylating the MAPK scaffold, KSR1. Mol Cell 8:983–993

    Article  PubMed  CAS  Google Scholar 

  • Muthumani K, Wadsworth SA, Dayes NS, Hwang DS, Choo AY, Abeysinghe HR, Siekierka JJ, Weiner DB (2004) Suppression of HIV-1 viral replication and cellular pathogenesis by a novel p38/JNK kinase inhibitor. AIDS 18:739–748

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima K, Shimao Y, Inoue T, Koono M (2002) Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett 176:101–109

    Article  PubMed  CAS  Google Scholar 

  • Nguyen A, Burack WR, Stock JL, Kortum R, Chaika OV, Afkarian M, Muller WJ, Murphy KM, Morrison DK, Lewis RE, McNeish J, Shaw AS (2002) Kinase suppressor of Ras (KSR) is a scaffold which facilitates mitogen-activated protein kinase activation in vivo. Mol Cell Biol 22:3035–3045

    Article  PubMed  CAS  Google Scholar 

  • Noritake J, Watanabe T, Sato K, Wang S, Kaibuchi K (2005) IQGAP1: a key regulator of adhesion and migration. J Cell Sci 118:2085–2092

    Article  PubMed  CAS  Google Scholar 

  • O’Neill EJ, Day MJ, Wraith DC (2006) IL-10 is essential for disease protection following intranasal peptide administration in the C57BL/6 model of EAE. J Neuroimmunol 178:1–8

    Article  PubMed  CAS  Google Scholar 

  • Parpal S, Karlsson M, Thorn H, Stralfors P (2001) Cholesterol depletion disrupts caveolae and insulin receptor signaling for metabolic control via insulin receptor substrate-1, but not for mitogen-activated protein kinase control. J Biol Chem 276:9670–9678

    Article  PubMed  CAS  Google Scholar 

  • Parton RG, Hanzal-Bayer M, Hancock JF (2006) Biogenesis of caveolae: a structural model for caveolin-induced domain formation. J Cell Sci 119:787–796

    Article  PubMed  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183

    Article  PubMed  CAS  Google Scholar 

  • Peiro S, Comella JX, Enrich C, Martin-Zanca D, Rocamora N (2000) PC12 cells have caveolae that contain TrkA. Caveolae-disrupting drugs inhibit nerve growth factor-induced, but not epidermal growth factor-induced, MAPK phosphorylation. J Biol Chem 275:37846–37852

    Article  PubMed  CAS  Google Scholar 

  • Perez de Castro I, Bivona TG, Philips MR, Pellicer A (2004) Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 24:3485–3496

    Article  CAS  Google Scholar 

  • Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL (1999) Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3:275–285

    Article  PubMed  CAS  Google Scholar 

  • Phillips-Mason PJ, Gates TJ, Major DL, Sacks DB, Brady-Kalnay SM (2006) The receptor protein-tyrosine phosphatase PTPmu interacts with IQGAP1. J Biol Chem 281:4903–4910

    Article  PubMed  CAS  Google Scholar 

  • Plyte S, Majolini MB, Pacini S, Scarpini F, Bianchini C, Lanfrancone L, Pelicci P, Baldari CT (2000) Constitutive activation of the Ras/MAP kinase pathway and enhanced TCR signaling by targeting the Shc adaptor to membrane rafts. Oncogene 19:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Pol A, Calvo M, Enrich C (1998) Isolated endosomes from quiescent rat liver contain the signal transduction machinery. Differential distribution of activated Raf-1 and Mek in the endocytic compartment. FEBS Lett 441:34–38

    Article  PubMed  CAS  Google Scholar 

  • Popescu FD (2003) New asthma drugs acting on gene expression. J Cell Mol Med 7:475–486

    Article  PubMed  CAS  Google Scholar 

  • Prior IA, Harding A, Yan J, Sluimer J, Parton RG, Hancock JF (2001) GTP-dependent segregation of H-ras from lipid rafts is required for biological activity. Nat Cell Biol 3:368–375

    Article  PubMed  CAS  Google Scholar 

  • Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6:149–165

    Article  PubMed  CAS  Google Scholar 

  • Qian D, Weiss A (1997) T cell antigen receptor signal transduction. Curr Opin Cell Biol 9:205–212

    Article  PubMed  CAS  Google Scholar 

  • Raman M, Cobb MH (2003) MAP kinase modules: many roads home. Curr Biol 13:R886–R888

    Article  PubMed  CAS  Google Scholar 

  • Ravichandran KS, Lee KK, Songyang Z, Cantley LC, Burn P, Burakoff SJ (1993) Interaction of Shc with the zeta chain of the T cell receptor upon T cell activation. Science 262:902–905

    Article  PubMed  CAS  Google Scholar 

  • Ren JG, Li Z, Sacks DB (2007) IQGAPI modulates activation of B-Rof. PNAS 104:10465–10469

    Article  PubMed  CAS  Google Scholar 

  • Reszka AA, Bulinski JC, Krebs EG, Fischer EH (1997) Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 regulates cytoskeletal organization and chemotaxis via catalytic and microtubule-specific interactions. Mol Biol Cell 8:1219–1232

    PubMed  CAS  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    Article  PubMed  CAS  Google Scholar 

  • Roy S, Wyse B, Hancock JF (2002) H-Ras signaling and K-Ras signaling are differentially dependent on endocytosis. Mol Cell Biol 22:5128–5140

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Li Z, Sacks DB (2004) IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 279:17329–17337

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Li Z, Sacks DB (2005) IQGAP1 is a scaffold for mitogen-activated protein kinase signalling. Mol Cell Biol 25:9740–9752

    Google Scholar 

  • Ruta M, Wolford R, Dhar R, Defeo-Jones D, Ellis RW, Scolnick EM (1986) Nucleotide sequence of the two rat cellular rasH genes. Mol Cell Biol 6:1706–1710

    PubMed  CAS  Google Scholar 

  • Sacks DB (2006) The role of scaffold proteins in MEK/ERK signalling. Biochem Soc Trans 34:833–836

    Article  PubMed  CAS  Google Scholar 

  • Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W (2002) The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 80:239–256

    Article  PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Catling AD, Eblen ST, Collier LS, Krauss A, Weber MJ (1998) MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science 281:1668–1671

    Article  PubMed  CAS  Google Scholar 

  • Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF (1994) Induction of caveolin during adipogenesis and association of GLUT4 with caveolin-rich vesicles. J Cell Biol 127:1233–1243

    Article  PubMed  CAS  Google Scholar 

  • Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4:937–947

    Article  PubMed  CAS  Google Scholar 

  • Sharma C, Vomastek T, Tarcsafalvi A, Catling AD, Schaeffer HJ, Eblen ST, Weber MJ (2005) MEK partner 1 (MP1): regulation of oligomerization in MAP kinase signaling. J Cell Biochem 94:708–719

    Article  PubMed  CAS  Google Scholar 

  • Sivaraman VS, Wang H, Nuovo GJ, Malbon CC (1997) Hyperexpression of mitogen-activated protein kinase in human breast cancer. J Clin Invest 99:1478–1483

    Article  PubMed  CAS  Google Scholar 

  • Sjogren AK, Andersson KM, Liu M, Cutts BA, Karlsson C, Wahlstrom AM, Dalin M, Weinbaum C, Casey PJ, Tarkowski A, Swolin B, Young SG, Bergo MO (2007) GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J Clin Invest 117:1294–1304

    Article  PubMed  CAS  Google Scholar 

  • Smart EJ, Ying YS, Mineo C, Anderson RG (1995) A detergent-free method for purifying caveolae membrane from tissue culture cells. Proc Natl Acad Sci USA 92:10104–10108

    Article  PubMed  CAS  Google Scholar 

  • Sobering AK, Romeo MJ, Vay HA, Levin DE (2003) A novel Ras inhibitor, Eri1, engages yeast Ras at the endoplasmic reticulum. Mol Cell Biol 23:4983–4990

    Article  PubMed  CAS  Google Scholar 

  • Solit DB, Garraway LA, Pratilas CA, Sawai A, Getz G, Basso A, Ye Q, Lobo JM, She Y, Osman I, Golub TR, Sebolt-Leopold J, Sellers WR, Rosen N (2006) BRAF mutation predicts sensitivity to MEK inhibition. Nature 439:358–362

    Article  PubMed  CAS  Google Scholar 

  • Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF (1994) Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Imoto I, Fukuda Y, Kurihara N, Kuroda S, Tanigami A, Kaibuchi K, Kamiyama R, Inazawa J (2001) IQGAP1, a negative regulator of cell-cell adhesion, is upregulated by gene amplification at 15q26 in gastric cancer cell lines HSC39 and 40A. J Hum Genet 46:21–25

    Article  PubMed  CAS  Google Scholar 

  • Sweeney SE, Firestein GS (2006) Mitogen activated protein kinase inhibitors: where are we now and where are we going? Ann Rheum Dis 65 (Suppl 3):iii83–iii88

    Article  PubMed  CAS  Google Scholar 

  • Szuts D, Eresh S, Bienz M (1998) Functional intertwining of Dpp and EGFR signaling during Drosophila endoderm induction. Genes Dev 12:2022–2035

    Article  PubMed  CAS  Google Scholar 

  • Takemoto H, Doki Y, Shiozaki H, Imamura H, Utsunomiya T, Miyata H, Yano M, Inoue M, Fujiwara Y, Monden M (2001) Localization of IQGAP1 is inversely correlated with intercellular adhesion mediated by e-cadherin in gastric cancers. Int J Cancer 91:783–788

    Article  PubMed  CAS  Google Scholar 

  • Tan PB, Kim SK (1999) Signaling specificity: the RTK/RAS/MAP kinase pathway in metazoans. Trends Genet 15:145–149

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Egami H, Ishikawa S, Kurizaki T, Tamori Y, Takai E, Hirota M, Ogawa M (2004) Relationship between the expression of extracellular signal-regulated kinase 1/2 and the dissociation of pancreatic cancer cells: Involvement of ERK1/2 in the dissociation status of cancer cells. Int J Oncol 24:815–820

    PubMed  CAS  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  • Teis D, Wunderlich W, Huber LA (2002) Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction. Dev Cell 3:803–814

    Article  PubMed  CAS  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267

    Article  PubMed  CAS  Google Scholar 

  • Torii S, Kusakabe M, Yamamoto T, Maekawa M, Nishida E (2004) Sef is a spatial regulator for Ras/MAP kinase signaling. Dev Cell 7:33–44

    Article  PubMed  CAS  Google Scholar 

  • Treisman R (1996) Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol 8:205–215

    Article  PubMed  CAS  Google Scholar 

  • Ussar S, Voss T (2004) MEK1 and MEK2, different regulators of the G1/S transition. J Biol Chem 279:43861–43869

    Article  PubMed  CAS  Google Scholar 

  • Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274:2086–2089

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Pennock S, Chen X, Wang Z (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290

    Article  PubMed  CAS  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R (2004) The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5:875–885

    Article  PubMed  CAS  Google Scholar 

  • Xavier R, Brennan T, Li Q, McCormack C, Seed B (1998) Membrane compartmentation is required for efficient T cell activation. Immunity 8:723–732

    Article  PubMed  CAS  Google Scholar 

  • Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:10433–10438

    Article  PubMed  CAS  Google Scholar 

  • Xiong S, Zhao Q, Rong Z, Huang G, Huang Y, Chen P, Zhang S, Liu L, Chang Z (2003) hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling. J Biol Chem 278:50273–50282

    Article  PubMed  CAS  Google Scholar 

  • York RD, Yao H, Dillon T, Ellig CL, Eckert SP, McCleskey EW, Stork PJ (1998) Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Moheban DB, Conway BR, Bhattacharyya A, Segal RA (2000) Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J Neurosci 20:5671–5678

    PubMed  CAS  Google Scholar 

  • Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ (2004) Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 95:239–252

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, M.D., Sacks, D.B. (2008). Compartmentalised MAPK Pathways. In: Klussmann, E., Scott, J. (eds) Protein-Protein Interactions as New Drug Targets. Handbook of Experimental Pharmacology, vol 186. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72843-6_9

Download citation

Publish with us

Policies and ethics