Skip to main content

Abstract

The adjoints of the numerical weather prediction (NWP) model and data assimilation system may be used together to objectively determine the observation impact – or whether a given observation platform or observing system improves or degrades the subsequent NWP forecast.

The observation impact is a very specific measure of forecast impact, as it depends upon the choice of forecast metric, the suite of observations assimilated, the data assimilation system, and the NWP forecast model. This chapter presents an overview of data assimilation adjoint theory, the observation impact calculation, and the appropriate choices for the forecast metric. Several applications of the observation adjoint technique are presented to illustrate its usefulness to help identify systematic problems with the observing network, to quantify the value of different observing platforms, to monitor the quality of the observing network, and for channel selection for satellite radiometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker NL (2000) Observation adjoint sensitivity and the adaptive observation-targeting problem. Ph.D. dissertation, Naval Postgraduate School, 265 pp. Available from the Naval Research Laboratory, Monterey, CA 93943.

    Google Scholar 

  • Baker NL, Daley R (2000) Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc 126: 1431–1454.

    Article  Google Scholar 

  • Bergot T (1999) Adaptive observations during FASTEX: A systematic survey of upstream flights. Q J R Meteorol Soc 125: 3271–3298.

    Article  Google Scholar 

  • Bergot T, Doerenbecher A (2002) A study of the optimization of the deployment of targeted observations using adjoint-based Methods. Q J R Meteorol Soc 128: 1689–1712.

    Article  Google Scholar 

  • Buizza R, Montani A (1999) Targeting observations using singular vectors. J Atmos Sci 56: 2965–2985.

    Article  Google Scholar 

  • Daley R (1991) Atmospheric data assimilation, Cambridge University Press, 457 pp.

    Google Scholar 

  • Daley R, Barker E (2001) NAVDAS: Formulation and Diagnostics. Mon Wea Rev 129: 869–883

    Article  Google Scholar 

  • Doerenbecher A, Bergot T (2001) Sensitivity to observations applied to FASTEX cases. Nonlinear Proc Geophys 8: 467–481.

    Article  Google Scholar 

  • Errico R (2007) Interpretation of ad adjoint-derived observational impact measure. Tellus 59A: 273–276.

    Google Scholar 

  • Fourrié NA, Rabier F (2004) Cloud characteristics and channel selection for IASI radiances in meteorologically sensitive areas. Q J R Meteorol Soc 130: 1839–1856.

    Article  Google Scholar 

  • Gelaro R, Langland RH, Rohaly GD, Rosmond TE (1999) An assessment of the singular vector approach to targeted observing using the FASTEX data set. Q J R Meteorol Soc 125: 3299–3327.

    Article  Google Scholar 

  • Gelaro R, Zhu Y, Errico R (2007) Examination of various-order adjoint-based approximations of observation impact. Meteorologische Zeitschrift, 16: 685–692.

    Article  Google Scholar 

  • Gelb A (1974) Applied optimal estimation. MIT Press, 374 pp.

    Google Scholar 

  • Hogan TF, Rosmond TE, Pauley RL (1999) The navy operational global atmospheric prediction system: Recent changes and testing of gravity wave and cumulus parameterizations. Preprints, 13th Conf Numerical Weather Prediction, Denver, CO, Amer Meteorol Soc, pp 60–65.

    Google Scholar 

  • Ide K, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Japan, 751B: 181–189.

    Google Scholar 

  • Joly A, Jorgensen D, Shapiro MA, Thorpe A, Bessemoulin P, Browning KA, Chalon J-P, Clough SA, Emanuel KA, Eymard L, Gall R, Hildebrand PH, Langland RH, Lemaitre Y, Lynch P, Moore JA, Persson POG, Snyder C, Wakimoto R (1997) The Fronts and Atlantic Storm-track Experiment (FASTEX): Scientific objectives and experimental design. Bull Amer Meteorol Soc, 78: 1917–1940.

    Article  Google Scholar 

  • Langland RH, Rohaly GD (1996) Adjoint-based targeting of observations for FASTEX cyclones. Preprints, 7th Conf Mesoscale Processes, Reading, UK, Amer Meteorol Soc, pp 369–371.

    Google Scholar 

  • Langland RH, Baker NL (2004a) Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, 56A: 189–201.

    Google Scholar 

  • Langland, RH, Baker NL (2004b) A technical description of the NAVDAS adjoint system. NRL/MR/7530-04-8746. Available from the Naval Research Laboratory, Monterey, CA, 93943, 62 pp.

    Google Scholar 

  • Morneau J, Pellerin S, Laroche S, Tanquay M (2006) Estimation of the adjoint sensitivity gradients in observation space using the dual (PSAS) formulation of the Environment Canada operational 4D-Var. Proceedings, 2nd THORPEX Intl Science Symp, Landshut, Germany, 4–8 December 2006, pp 162–163.

    Google Scholar 

  • Palmer TN, Gelaro R, Barkmeijer J, Buizza R (1998) Singular vectors, metrics and adaptive observations. J Atmos Sci 55: 633–653.

    Article  Google Scholar 

  • Rabier F, Klinker E, Courtier P, Hollingsworth A (1996) Sensitivity of forecast errors to initial conditions. Q J R Meteorol Soc, 122: 121–150.

    Article  Google Scholar 

  • Rodgers, C. D. (1996) Information content and optimization of high spectral resolution measurements. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, SPIE Vol. 2830, 136–147. Published by the International Society for Optical Engineering, PO Box 10, Bellingham, Washington, 98227-0010, USA, 2830.

    Google Scholar 

  • Rosmond TE (1997) A technical description of the NRL adjoint modeling system, NRL/MR/7532/97/7230 Available from the Naval Research Laboratory, Monterey, CA 93943, 55 pp.

    Google Scholar 

  • Rosmond T, Xu L (2006) Development of NAVDAS-AR: non-linear formulation and outer loop tests. Tellus, 58A, 45–58.

    Google Scholar 

  • Ruston B, Blankenship C, Campbell W, Langland R, Baker N (2006) Assimilation of AIRS data at NRL. 15th Intl TOVS Study Conf, Maratea, Italy, 4–10 October 2006.

    Google Scholar 

  • Xu L, Rosmond R (2005) Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus, 57A, 546–559.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baker, N.L., Langland, R.H. (2009). Diagnostics for Evaluating the Impact of Satellite Observations. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_9

Download citation

Publish with us

Policies and ethics