Skip to main content

Specialized Components of the Translational Machinery for Unnatural Amino Acid Mutagenesis: tRNAs, Aminoacyl-tRNA Synthetases, and Ribosomes

  • Chapter
Protein Engineering

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 22))

Site-specific incorporation of unnatural amino acids (amino acid analogues) into proteins adds a new dimension to studies of protein structure and function. Here, we describe in detail the development of methods for site-specific incorporation of unnatural amino acids with novel chemical, physical and biological properties using specialized suppressor tRNAs alongside engineered aminoacyl-tRNA synthetases and ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agris PF (2004) Decoding the genome: a modified view. Nucleic Acids Res 32:223–238

    Article  PubMed  CAS  Google Scholar 

  • Agris PF, Vendeix FAP, Graham WD (2007) tRNA's wobble decoding of the genome: 40 years of modification. J Mol Biol 366:1–13

    Article  PubMed  CAS  Google Scholar 

  • Anderson JC, Schultz P (2003) Adaptation of an orthogonal archaeal leucyl-tRNA and synthetase pair for four-base, amber, and opal suppression. Biochemistry 42:9598–9608

    Article  PubMed  CAS  Google Scholar 

  • Anderson RD, Zhou J, Hecht SM (2002) Fluorescence resonance energy transfer between unnatural amino acids in a structurally modified dihydrofolate reductase. J Am Chem Soc 124:9674–9675

    Article  PubMed  CAS  Google Scholar 

  • Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, Schultz PG (2004) An expanded genetic code with a functional quadruplet codon. Proc Natl Acad Sci USA 101:7566–7571

    Article  PubMed  CAS  Google Scholar 

  • Bain JD, Switzer C, Chamberlin AR, Benner SA (1992) Ribosome-mediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 356:537–539

    Article  PubMed  CAS  Google Scholar 

  • Beene DL, Dougherty DA, Lester HA (2003) Unnatural amino acid mutagenesis in mapping ion channel function. Curr Opin Neurobiol 13:264–270

    Article  PubMed  CAS  Google Scholar 

  • Björk GR (1995) Biosynthesis and function of modified nucleosides. In: Söll D, RajBhandary UL (eds) tRNA: structure, biosynthesis, and function. American Society for Microbiology, Washington DC, pp 165–205

    Google Scholar 

  • Bossi L, Roth JR (1980) The influence of codon context on genetic code translation. Nature 286:123–127

    Article  PubMed  CAS  Google Scholar 

  • Brick P, Bhat TN, Blow DM (1989) Structure of tyrosyl-tRNA synthetase refined at 2.3 A resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J Mol Biol 208:83–98

    Article  PubMed  CAS  Google Scholar 

  • Buckingham RH (1994) Codon context and protein synthesis: enhancements of the genetic code. Biochimie 76:351–354

    Article  PubMed  CAS  Google Scholar 

  • Calendar R, Berg P (1966) The catalytic properties of tyrosyl ribonucleic acid synthetases from Escherichia coli and Bacillus subtilis. Biochemistry 5:1690–1695

    Article  PubMed  CAS  Google Scholar 

  • Carnes J, Jacobson M, Leinwand L, Yarus M (2003) Stop codon suppression via inhibition of eRF1 expression. RNA 9:648–645

    Article  PubMed  CAS  Google Scholar 

  • Chin JW, Cropp TA, Anderson JC, Mukherji M, Zhang Z, Schultz PG (2003) An expanded eukaryotic genetic code. Science 301:964–967

    Article  PubMed  CAS  Google Scholar 

  • Chow CM, RajBhandary UL (1993) Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA syn-thetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis. J Biol Chem 268:12855–12863

    PubMed  CAS  Google Scholar 

  • Clark JMJ, Eyzaguirre JP (1962) Tyrosine activation and transfer to soluble ribonucleic acid. I. Purification and study of the enzyme of hog pancreas. J Biol Chem 237:3698–3702

    PubMed  CAS  Google Scholar 

  • Colby DS, Schedl P, Guthrie C (1976) A functional requirement for modification of the wobblenucleotide in the anticodon of a T4 suppressor tRNA. Cell 9:449–463

    Article  PubMed  CAS  Google Scholar 

  • Crick FH, Barnett L, Brenner S, Watts-Tobin RJ (1961) General nature of the genetic code for proteins. Nature 192:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Crick FHC (1958) On protein synthesis. Symp Soc Exp Biol 12:138–163

    PubMed  CAS  Google Scholar 

  • Dedkova LM, Fahmi NE, Golovine SY, Hecht SM (2003) Enhanced d-amino acid incorporation into protein by modified ribosomes. J Am Chem Soc 125:6616–6617

    Article  PubMed  CAS  Google Scholar 

  • Dedkova LM, Fahmi NE, Golovine SY, Hecht SM (2006) Construction of modified ribosomes for incorporation of d-amino acids into proteins. Biochemistry 45:15541–15551

    Article  PubMed  CAS  Google Scholar 

  • Drabkin HJ, Park HJ, RajBhandary UL (1996) Amber suppression in mammalian cells dependent upon expression of an Escherichia coli aminoacyl-tRNA synthetase gene. Mol Cell Biol 16:907–913

    PubMed  CAS  Google Scholar 

  • Drabkin HJ, Estrella M, RajBhandary UL (1998) Initiator-elongator discrimination in vertebrate tRNAs for protein synthesis. Mol Cell Biol 18:1459–1466

    PubMed  CAS  Google Scholar 

  • Drugeon G, Jean-Jean O, Frolova L, Le Goff X, Philippe M, Kisselev L, Haenni AL (1997) Eukaryotic release factor 1 (eRF1) abolishes readthrough and competes with suppressor tRNAs at all three termination codons in messenger RNA. Nucleic Acids Res 25:2254–2258

    Article  PubMed  CAS  Google Scholar 

  • Edwards H, Schimmel P (1990) A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Mol Cell Biol 10:1633–1641

    PubMed  CAS  Google Scholar 

  • Ericson JU, Björk GR (1991) tRNA anticodons with the modified nucleoside 2-methylthio-N6-(4-hydroxyisopentenyl)adenosine distinguish between bases 3′ of the codon. J Mol Biol 218: 509–516

    Article  PubMed  CAS  Google Scholar 

  • Fujii N (2002) d-Amino acids in living higher organisms. Orig Life Evol Biosph 32:103–127

    Article  PubMed  CAS  Google Scholar 

  • Hartman MCT, Josephson K, Szostak JW (2006) Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci USA 103:4356–4361

    Article  PubMed  CAS  Google Scholar 

  • Hartman MCT, Josephson K, Lin C-W, Szostak JW (2007) An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS ONE 2:e972

    Article  PubMed  CAS  Google Scholar 

  • Heckler TG, Chang LH, Zama Y, Naka T, Chorghade MS, Hecht SM (1984) T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPhes. Biochemistry 23:1468–1473

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson TL, de Crécy-Lagard V, Schimmel P (2004) Incorporation of nonnatural amino acids into proteins. Annu Rev Biochem 73:147–176

    Article  PubMed  CAS  Google Scholar 

  • Hino N, Okazaki Y, Kobayashi T, Hayashi A, Sakamoto K, Yokoyama S (2005) Protein photo-cross-linking in mammalian cells by site-specific incorporation of a photoreactive amino acid. Nat Methods 2:201–206

    Article  PubMed  CAS  Google Scholar 

  • Hirao I, Kimoto M, Mitsui T, Harada Y, Fujiwara T, Sato A, Yokoyama S (2002) An unnatural base pair between imidazolin-2-one and 2-amino-6-(2-thienyl)purine in replication and transcription. Nucleic Acids Res Suppl:37–38

    Google Scholar 

  • Hohsaka T, Ashizuka Y, Murakami H, Sisido M (1996) Incorporation of nonnatural amino acids into streptavidin through in vitro frame-shift suppression. J Am Chem Soc 118:9778–9779

    Article  CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Sasaki H, Murakami H, Sisido M (1999) Incorporation of two different nonnatural amino acids independently into a single protein through extension of the genetic code. J Am Chem Soc 121:12194–12195

    Article  CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Murakami H, Sisido M (2001a) Five-base codons for incorporation of nonnatural amino acids into proteins. Nucleic Acids Res 29:3646–3651

    Article  CAS  Google Scholar 

  • Hohsaka T, Ashizuka Y, Taira H, Murakami H, Sisido M (2001b) Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coli in vitro translation system. Biochemistry 40:11060–11064.

    Article  CAS  Google Scholar 

  • Hui A, de Boer HA (1987) Specialized ribosome system: Preferential translation of a single mRNA species by a subpopulation of mutated ribosomes in Escherichia coli. Proc Natl Acad Sci USA 84:4762–4766

    Article  PubMed  CAS  Google Scholar 

  • Ilegems E, Pick HM, Vogel H (2002) Monitoring mis-acylated tRNA suppression efficiency in mammalian cells via EGFP fluorescence recovery. Nucleic Acids Res 30, e128:1–6

    Google Scholar 

  • Ilegems E, Pick HM, Vogel H (2004) Downregulation of eRF1 by RNA interference increases mis-acylated tRNA suppression efficiency in human cells. Protein Eng 17:821–827

    Article  CAS  Google Scholar 

  • Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a 19F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129:1160–1166

    Article  PubMed  CAS  Google Scholar 

  • Jacob WF, Santer M, Dahlberg AE (1987) A single base change in the Shine—Dalgarno region of 16S rRNA of Escherichia coli affects translation of many proteins. Proc Natl Acad Sci USA 84:4757–4761

    Article  PubMed  CAS  Google Scholar 

  • Jakubowski H, Fersht AR (1981) Alternative pathways for editing non-cognate amino acids by aminoacyl-tRNA synthetases. Nucleic Acids Res 9:3105–3117

    Article  PubMed  CAS  Google Scholar 

  • Janzen DM, Geballe AP (2004) The effect of eukaryotic release factor depletion on translation termination in human cell lines. Nucleic Acids Res 32:4491–4502

    Article  PubMed  CAS  Google Scholar 

  • Kiga D, Sakamoto K, Kodama K, Kigawa T, Matsuda T, Yabuki T, Shirouzu M et al (2002) An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci USA 99:9715–9720

    Article  PubMed  CAS  Google Scholar 

  • Kisselev L, Ehrenberg M, Frolova L (2003) Termination of translation: interplay of mRNA, rRNAs and release factors? EMBO J 22:175–182

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova E V, Vestergaard B, Ehrenberg M et al (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421:90–94

    Article  PubMed  CAS  Google Scholar 

  • Kleina LG, Masson JM, Normanly J, Abelson J, Miller JH (1990) Construction of Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and improvement of suppressor efficiency. J Mol Biol 213:705–717

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Sakamoto K, Takimura T, Sekine R, Kelly VP, Kamata K, Nishimura S et al (2005) Structural basis of nonnatural amino acid recognition by an engineered aminoacyl-tRNA syn-thetase for genetic code expansion. Proc Natl Acad Sci USA 102:1366–1371

    Article  PubMed  CAS  Google Scholar 

  • Köhrer C, RajBhandary UL (2005) Proteins carrying one or more unnatural amino acids. In: Ibba M, Francklyn C, Cusack S (eds) Aminoacyl-tRNA synthetases. Landes Bioscience, pp 353–363

    Google Scholar 

  • Köhrer C, Xie L, Kellerer S, Varshney U, RajBhandary UL (2001) Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins. Proc Natl Acad Sci USA 98:14310–14315

    Article  PubMed  Google Scholar 

  • Köhrer C, Yoo J, Bennett M, Schaack J, RajBhandary UL (2003) A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol 10:1095–1102

    Article  PubMed  CAS  Google Scholar 

  • Köhrer C, Sullivan EL, RajBhandary UL (2004) Complete set of orthogonal 21st aminoacyl- tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res 32:6200–6211

    Article  PubMed  CAS  Google Scholar 

  • Kowal AK, Köhrer C, RajBhandary UL (2001) Twenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA 98:2268–2273

    Article  PubMed  CAS  Google Scholar 

  • Kreil G (1997) d-amino acids in animal peptides. Annu Rev Biochem 66:337–345

    Article  PubMed  CAS  Google Scholar 

  • Lee CP, RajBhandary UL (1991) Mutants of Escherichia coli initiator tRNA that suppress amber codons in Saccharomyces cerevisiae and are aminoacylated with tyrosine by yeast extracts. Proc Natl Acad Sci USA 88:11378–11382

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Brock A, Chen S, Chen S, Schultz PG (2007) Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods 4:239–244

    Article  PubMed  CAS  Google Scholar 

  • Makosky PC, Dahlberg AE (1987) Spectinomycin resistance at site 1192 in 16S ribosomal RNA of E. coli: An analysis of three mutants. Biochimie 69:885–889

    Article  PubMed  CAS  Google Scholar 

  • McMinn DL, Ogawa AK, Wu Y, Liu J, Schultz PG, Romesberg FE (1999) Efforts toward expansion of the genetic alphabet: DNA polymerase recognition of a highly stable, self-pairing hydrophobic base. J Am Chem Soc 121:11585–11586

    Article  CAS  Google Scholar 

  • Mitsui T, Kimoto M, Harada Y, Sato A, Kitamura A, To T, Hirao I et al (2002) Enzymatic incorporation of an unnatural base pair between 4-propynyl-pyrrole-2-carbaldehyde and 9-methyl-imidazo [(4,5)-b]pyridine into nucleic acids. Nucleic Acids Res Suppl:219–220

    Google Scholar 

  • Mitsui T, Kitamura A, Kimoto M, To T, Sato A, Hirao I, Yokoyama S (2003) An unnatural hydro-phobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methyl-imidazo[(4,5)-b]pyridine. J Am Chem Soc 125:5298–5307

    Article  PubMed  CAS  Google Scholar 

  • Monahan SL, Lester HA, Dougherty DA (2003) Site-specific incorporation of unnatural amino acids into receptors expressed in mammalian cells. Chem Biol 10:573–580

    Article  PubMed  CAS  Google Scholar 

  • Motorin Y, Bec G, Tewari R, Grosjean H (1997) Transfer RNA recognition by the Escherichia coli delta2-isopentenyl-pyrophosphate:tRNA delta2-isopentenyl transferase: dependence on the anticodon arm structure. RNA 3:721–733

    PubMed  CAS  Google Scholar 

  • Murakami H, Bonzagni NJ, Suga H (2002) Aminoacyl-tRNA synthesis by a resin-immobilized ribozyme. J Am Chem Soc 124:6834–6835

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Saito H, Suga H (2003) A versatile tRNA aminoacylation catalyst based on RNA. Chem Biol 10:655–662

    Article  PubMed  CAS  Google Scholar 

  • Murakami H, Ohta M, Ashigai H, Suga H (2006) A highly flexible tRNA acylation method for non-natural polypeptide synthesis. Nat Methods 3:357–359

    Article  PubMed  CAS  Google Scholar 

  • Myslinski E, Amé JC, Krol A, Carbon P (2001) An unusually compact external promoter for RNA polymerase III transcription of the human H1RNA gene. Nucleic Acids Res 29:2502–2509

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Ito K, Isaksson LA (1996) Emerging understanding of translation termination. Cell 87:147–150

    Article  PubMed  CAS  Google Scholar 

  • Ninomiya K (2003) Facile aminoacylation of pdCpA dinucleotide with a nonnatural amino acid in cationic micelle. Chem Commun (17):2242–2243

    Google Scholar 

  • Ninomiya K, Minohata T, Nishimura M, Sisido M (2004) In situ chemical aminoacylation with amino acid thioesters linked to a peptide nucleic acid. J Am Chem Soc 126:15984–15989

    Article  PubMed  CAS  Google Scholar 

  • Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188

    Article  PubMed  CAS  Google Scholar 

  • Nowak MW, Kearney PC, Sampson JR, Saks ME, Labarca CG, Silverman SK, Zhong W et al (1995) Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells. Science 268:439–442

    Article  PubMed  CAS  Google Scholar 

  • Ogawa AK, Wu Y, Berger M, Schultz PG, Romesberg FE (2000a) Rational design of an unnatural base pair with increased kinetic selectivity. J Am Chem Soc 122:8803–8804

    Article  CAS  Google Scholar 

  • Ogawa AK, Wu Y, McMinn DL, Liu J, Schultz PG, Romesberg FE (2000b) Efforts toward the expansion of the genetic alphabet: information storage and replication with unnatural hydro-phobic base pairs. J Am Chem Soc 122:3274–3287

    Article  CAS  Google Scholar 

  • Ohtsuki T, Kimoto M, Ishikawa M, Mitsui T, Hirao I, Yokoyama S (2001) Unnatural base pairs for specific transcription. Proc Natl Acad Sci USA 98:4922–4925

    Article  PubMed  CAS  Google Scholar 

  • Petry S, Brodersen DE, Murphy FVt, Dunham CM, Selmer M, Tarry MJ, Kelley AC et al (2005) Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Pingoud A, Urbanke C (1980) Aminoacyl transfer ribonucleic acid binding site of the bacterial elongation factor Tu. Biochemistry 19:2108–2112

    Article  PubMed  CAS  Google Scholar 

  • Rackham O, Chin JW (2005) A network of orthogonal ribosome x mRNA pairs. Nat Chem Biol 1:159–166

    Article  PubMed  CAS  Google Scholar 

  • RajBhandary UL (1994) Initiator transfer RNAs. J Bacteriol 176:547–552

    PubMed  CAS  Google Scholar 

  • Riddle DL, Roth JR (1970) Suppressors of frameshift mutations in Salmonella typhimurium. J Mol Biol 54:131–144

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2006) In vivo incorporation of multiple unnatural amino acids through nonsense and frameshift suppression. Proc Natl Acad Sci USA 103:8650–8655

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2007a) Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 1: Minimizing misacylation. RNA 13:1703–1714

    Article  CAS  Google Scholar 

  • Rodriguez EA, Lester HA, Dougherty DA (2007b) Improved amber and opal suppressor tRNAs for incorporation of unnatural amino acids in vivo. Part 2: evaluating suppression efficiency. RNA 13:1715–1722

    Article  CAS  Google Scholar 

  • Saito H, Suga H (2001) A ribozyme exclusively aminoacylates the 3′-hydroxyl group of the tRNA terminal adenosine. J Am Chem Soc 123:7178–7179

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Kourouklis D, Suga H (2001) An in vitro evolved precursor tRNA with aminoacylation activity. EMBO J 20:1797–1806

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Hayashi A, Sakamoto A, Kiga D, Nakayama H, Soma A, Kobayashi T et al (2002) Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res 30:4692–4699

    Article  PubMed  CAS  Google Scholar 

  • Santoro SW, Anderson JC, Lakshman V, Schultz PG (2003) Nucleic Acids Res 31:6700–6709

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR et al (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Seyedsayamdost MR, Xie J, Chan CT, Schultz PG, Stubbe J (2007) Site-specific insertion of 3-aminotyrosine into subunit alpha2 of E. coli ribonucleotide reductase: Direct evidence for involvement of Y730 and Y731 in radical propagation. J Am Chem Soc 129:15060–150671

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T (2001) Cell-free translation reconstituted with purified components. Nat Biotechnol 19:751–755

    Article  PubMed  CAS  Google Scholar 

  • Short GF, Golovine SY, Hecht SM (1999) Effects of release factor 1 on in vitro protein translation and the elaboration of proteins containing unnatural amino acids. Biochemistry 38:8808–8819

    Article  PubMed  CAS  Google Scholar 

  • Soutourina J, Plateau P, Delort F, Peirotes A, Blanquet S (1999) Functional characterization of the d-Tyr-tRNATyr deacylase from Escherichia coli. J Biol Chem 274:19109–19114

    Article  PubMed  CAS  Google Scholar 

  • Soutourina J, Plateau P, Blanquet S (2000) Metabolism of d-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells. J Biol Chem 275:32535–32542

    Article  PubMed  CAS  Google Scholar 

  • Sprague KU (1994) Transcription of eukaryotic tRNA genes. AMS Press, Washington DC

    Google Scholar 

  • Wang L, Brock A, Herberich B, Schultz PG (2001) Expanding the genetic code of Escherichia coli. Science 292:498–500

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Xie J, Schultz PG (2006) Expanding the genetic code. Annu Rev Biophys Biomol Struct 35:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wang K, Neumann H, Peak-Chew SY, Chin JW (2007a) Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat Biotechnol 25:770–777

    Article  CAS  Google Scholar 

  • Wang W, Takimoto JK, Louie GV, Baiga TJ, Noel JP, Lee KF, Slesinger PA et al (2007b) Genetically encoding unnatural amino acids for cellular and neuronal studies. Nat Neurosci 10: 1063–1072

    Article  CAS  Google Scholar 

  • Wu Y, Ogawa AK, Berger M, McMinn DL, Schultz PG, Romesberg FE (2000) Efforts toward expansion of the genetic alphabet: optimization of interbase hydrophobic interactions. J Am Chem Soc 122:7621–7632

    Article  CAS  Google Scholar 

  • Wu N, Deiters DA, Cropp TA, King DS, Schultz PG (2004) J Am Chem Soc 126:14306–14307

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Schultz PG (2006) A chemical toolkit for proteins: An expanded genetic code. Nat Rev Mol Cell Biol 7:775–782

    Article  PubMed  CAS  Google Scholar 

  • Xie J, Supekova L, Schultz PG (2007) A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. ACS Chem Biol 2:474–478

    Article  PubMed  CAS  Google Scholar 

  • Yamane T, Miller DL, Hopfield JJ (1981) Discrimination between d- and l-tyrosyl transfer ribo-nucleic acids in peptide chain elongation. Biochemistry 20:7059–7064

    Article  PubMed  CAS  Google Scholar 

  • Yanofsky C, Soll L (1977) Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J Mol Biol 113:663–677

    Article  PubMed  CAS  Google Scholar 

  • Yarus M (1982) Translational efficiency of transfer RNA's: uses of an extended anticodon. Science 218:646–652

    Article  PubMed  CAS  Google Scholar 

  • Yarus M, Cline S, Raftery L, Wier P, Bradley D (1986) The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem 261:496–505

    Google Scholar 

  • Ye S, Köhrer C, Huber T, Kazmi M, Sachdev P, Yan ECY, Bhagat A et al (2008) Site-specific incorporation of keto amino acids into functional G protein-coupled receptors using unnatural amino acid mutagenesis. J Biol Chem 283:1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Yourno J (1972) Externally suppressible +1 “glycine” frameshift: possible quadruplet isomers for glycine and proline. Nat New Biol 239:219–221

    Article  PubMed  CAS  Google Scholar 

  • Yourno J, Kohno T (1972) Externally suppressible proline quadruplet ccc U. Science 175:650–652

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 A resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Alfonta L, Tian F, Bursulaya B, Uryu S, King DS, Schultz PG (2004) Selective incorporation of 5-hydroxytryptophan into proteins in mammalian cells. Proc Natl Acad Sci USA 101:8882–8887

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Köhrer, C., RajBhandary, U.L. (2009). Specialized Components of the Translational Machinery for Unnatural Amino Acid Mutagenesis: tRNAs, Aminoacyl-tRNA Synthetases, and Ribosomes. In: Köhrer, C., RajBhandary, U.L. (eds) Protein Engineering. Nucleic Acids and Molecular Biology, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70941-1_7

Download citation

Publish with us

Policies and ethics