Skip to main content

Laser Doppler Techniques for Ocular Blood Velocity and Flow

  • Chapter
  • First Online:
Ocular Blood Flow

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shepherd AP (1990) History of laser-Doppler blood flowmetry. In: Shepherd AP, Öberg PA (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston, pp 1–16

    Google Scholar 

  2. Riva CE, Ross B, Benedek GB (1972) Laser Doppler measurements of blood flow in capillary tubes and retinal arteries. Invest Ophthalmol Vis Sci 11:936–944

    CAS  Google Scholar 

  3. Tanaka T, Riva CE, Ben-Sira I (1974) Blood velocity measurements in human retinal vessels. Science 186:830–831

    PubMed  CAS  Google Scholar 

  4. Stern MD (1975) In vivo evaluation of microcirculation by coherent light scattering. Nature 254:56–58

    PubMed  CAS  Google Scholar 

  5. Riva CE, Grunwald JE, Sinclair SH (1982) Laser Doppler measurement of relative blood velocity in the human optic nerve head. Invest Ophthalmol Vis Sci 22:241–248

    PubMed  CAS  Google Scholar 

  6. Riva CE, Harino S, Petrig BL, Shonat RD (1992) Laser Doppler flowmetry in the optic nerve. Exp Eye Res 55:499–506

    PubMed  CAS  Google Scholar 

  7. Riva CE, Falsini B, Geiser MH, Petrig BL (1999) Optice nerve head blood flow response to flicker: characteristics and possible mechanisms. In: Pillunat LE, Harris A, Anderson DR, Greve EL (eds) Current concepts on ocular blood flow in glaucoma. Kugler Publications, The Hague, pp 191–196

    Google Scholar 

  8. Petrig BL, Riva CE (1999) Laser Doppler flowmetry in the optic nerve head. Principle and technique. In: Pillunat LE, Harris A, Anderson DR, Greve EL (eds) Current concepts on ocular blood flow in glaucoma. Kugler Publications, The Hague, pp 171–182

    Google Scholar 

  9. Riva CE, Cranstoun SD, Grunwald JE, Petrig BL (1994) Choroidal blood flow in the foveal region of the human ocular fundus. Invest Ophthalmol Vis Sci 35:4273–4281

    PubMed  CAS  Google Scholar 

  10. Michelson G, Schmauss B, Langhans MJ, Harazny J, Groh MJM (1996) Principle, validity, and reliability of scanning laser Doppler flowmetry. J Glaucoma 5:99–105

    PubMed  CAS  Google Scholar 

  11. Riva CE, Petrig BL (1990) Retinal blood flow: laser Doppler velocimetry and blue field simulation technique. In: Masters BR (ed) Noninvasive diagnostic techniques in ophthalmology. Springer, New York, pp 390–409

    Google Scholar 

  12. Riva CE, Petrig BL (2003) Laser Doppler techniques in ophthalmology – Principles and applications. In: Fankhauser F, Kwasniewska S (eds) Lasers in ophthalmology – Basic, diagnostic and surgical aspects. Kugler Publications, The Hague, pp 51–59

    Google Scholar 

  13. Riva CE, Feke GT (1981) Laser Doppler veloci­metry in the measurement of retinal blood flow. In: Goldman L (ed) The biomedical laser technology and clinical applications. Springer, New York, pp 135–161

    Google Scholar 

  14. Riva CE, Petrig BL, Grunwald JE (1989) Retinal blood flow. In: Shepherd AP, Öberg PA (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston, pp 349–383

    Google Scholar 

  15. Benedek GB (1969) Optical mixing spectroscopy with applications to problems in physics, chemistry, biology and engineering Polarization, Matter and Radiation (The Jubilee Volume in Honor of Alfred Kastler). Presses Universitaires de France, Paris, pp 49–84

    Google Scholar 

  16. Cummins HZ, Swinney HL (1970) Light beating spectroscopy. In: Wolf E (ed) Progress in optics. North-Holland Publishing Company, Amsterdam, pp 133–200

    Google Scholar 

  17. Riva CE, Feke GT, Eberli B, Benary V (1979) Bidirectional LDV system for absolute measurement of blood speed in retinal vessels. Appl Opt 18:2301–2306

    PubMed  CAS  Google Scholar 

  18. Riva CE, Grunwald JE, Sinclair SH, O’Keefe K (1981) Fundus camera based retinal LDV. Appl Opt 20:117–120

    PubMed  CAS  Google Scholar 

  19. Feke GT, Goger DG, Tagawa H, Delori FC (1987) Laser Doppler technique for absolute measurement of blood speed in retinal vessels. IEEE Trans Biomed Eng BME-34:673–680

    Google Scholar 

  20. Garcia JPS Jr, Garcia PT, Rosen RB (2002) Retinal blood flow in the normal human eye using the canon laser blood flowmeter. Ophthalmic Res 34:295–299

    PubMed  Google Scholar 

  21. Petrig BL, Follonier L (2005) Ray tracing model for the estimation of the power spectral properties in laser Doppler velocimetry of retinal vessels and its potential application to retinal vessel oximetry. Opt Express 13:10642–10651

    PubMed  Google Scholar 

  22. Riva CE, Shonat RD, Petrig BL, Pournaras CJ (1989) Scattering process in LDV from retinal vessels. Appl Opt 28:1078–1083

    PubMed  CAS  Google Scholar 

  23. Van de Hulst HC (1957) Light scattering by small particles. Wiley, New York

    Google Scholar 

  24. Feke GT, Riva CE (1978) Laser Doppler measurements of blood velocity in human retinal vessels. J Opt Soc Am 68:526–531

    PubMed  CAS  Google Scholar 

  25. Riva CE, Grunwald JE, Petrig BL (1985) Laser Doppler measurement of retinal blood velocity: validity of the single scattering model. Appl Opt 24:605–607

    PubMed  CAS  Google Scholar 

  26. Bonner R, Nossal R (1981) Model for laser Doppler measurements of blood flow in tissue. Appl Opt 20:2097–2107

    PubMed  CAS  Google Scholar 

  27. Stern MD (1985) Laser Doppler velocimetry in blood and multiply scattering fluids: theory. Appl Opt 24:1968–1983

    PubMed  CAS  Google Scholar 

  28. Riva CE, Grunwald JE, Sinclair SH, Petrig BL (1985) Blood velocity and volumetric flow rate in human retinal vessels. Invest Ophthalmol Vis Sci 26:1124–1132

    PubMed  CAS  Google Scholar 

  29. Petrig BL, Riva CE (1994) New continuous real-time analysis system for laser Doppler flowmetry and velocimetry in the ocular fundus using a digital processor. In: Vision science and its application technical digest series. Optical Society of America, Washington, DC, pp 238–241

    Google Scholar 

  30. Petrig BL, Gehrig JP, Pompili P (2000) New multi-channel DSP-based laser Doppler flowmetry analysis system for quantification of ocular blood flow. Proc SPIE 4156:318–327

    Google Scholar 

  31. Yoshida A, Feke GT, Mori F et al (2003) Reproducibility and clinical application of a newly developed stabilized retinal laser Doppler instrument. Am J Ophthalmol 135:356–361

    PubMed  Google Scholar 

  32. Logean E, Geiser MH, Petrig BL, Riva CE (1997) Portable ocular laser Doppler red blood cell velocimeter. Rev Sci Instrum 68:2878–2882

    CAS  Google Scholar 

  33. Riva CE, Petrig BL, Grunwald JE (1987) Near-infrared retinal laser Doppler velocimetry. Lasers Ophthalmol 1:211–215

    Google Scholar 

  34. Yoshida A, Feke GT, Feke GD, McMeel JW (1998) A new laser Doppler system for examining optic nerve head circulation. J Biomed Opt 3:396–400

    PubMed  CAS  Google Scholar 

  35. Koller A, Kaley G (1991) Endothelial regulation of wall shear stress and blood flow in skeletal muscle microcirculation. Am J Physiol 260:H862–H868

    PubMed  CAS  Google Scholar 

  36. Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Taylor WR (1998) The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316:169–175

    PubMed  CAS  Google Scholar 

  37. Yazdanfar S, Rollins AM, Izatt JA (2000) Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt Lett 25:1448–1450

    PubMed  CAS  Google Scholar 

  38. Leitgeb RA, Schmetterer L, Drexler W, Fercher AF (2003) Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt Express 11:3116–3121

    PubMed  Google Scholar 

  39. Ferguson RD, Hammer DX, Elsner AE, Webb RH, Burns SA, Weiter JJ (2004) Wide-field retinal hemodynamic imaging with the tracking scanning laser ophthalmoscope. Opt Express 12:5198–5208

    PubMed  CAS  Google Scholar 

  40. Bishop JJ, Nance PR, Popel AS, Intaglietta M, Johnson PC (2001) Effect of erythrocyte aggregation on velocity profiles in venules. Am J Physiol Heart Circ Physiol 280:H222–H236

    PubMed  CAS  Google Scholar 

  41. Logean E, Schmetterer L, Riva CE (2003) Velocity profile of red blood cells in human retinal vessels using confocal scanning laser Doppler velocimetry. Laser Phys 13:45–51

    Google Scholar 

  42. Feke GT, Tagawa H, Deupree DM, Goger DG, Sebag J, Weiter JJ (1989) Blood flow in the normal human retina. Invest Ophthalmol Vis Sci 30:58–65

    PubMed  CAS  Google Scholar 

  43. Guan K, Hudson C, Flanagan JG (2003) Variability and repeatability of retinal blood flow measurements using the canon Laser blood flowmeter. Microvasc Res 65:145–151

    PubMed  Google Scholar 

  44. Petrig BL, Riva CE (1988) Retinal laser-Doppler velocimetry: towards its computer assisted clinical use. Appl Opt 27:1126–1134

    PubMed  CAS  Google Scholar 

  45. Delori FC, Pomerantzeff O, Mainster MA (1980) Light levels in ophthalmic diagnostic instruments. Proc SPIE 229:154–160

    Google Scholar 

  46. Delori FC, Webb RH, Sliney DH (2007) Maximum permissible exposures for ocular safety (ANSI 2000), with emphasis on ophthalmic devices. J Opt Soc Am 24:1250–1265

    Google Scholar 

  47. Garhöfer G, Zawinka C, Resch H, Huemer KH, Dorner GT, Schmetterer L (2004) Diffuse luminance flicker increase blood flow in major retinal arteries and veins. Vision Res 44:833–838

    PubMed  Google Scholar 

  48. Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci U S A 12:207–214

    PubMed  CAS  Google Scholar 

  49. Robinson F, Riva CE, Grunwald JE, Petrig BL, Sinclair SH (1986) Retinal blood flow autoregulation in response to an acute increase in blood pressure. Invest Ophthalmol Vis Sci 27:722–726

    PubMed  CAS  Google Scholar 

  50. Riva CE, Sinclair SH, Grunwald JE (1981) Autoregulation of retinal circulation in response to decrease of perfusion pressure. Invest Ophthalmol Vis Sci 21:34–38

    PubMed  CAS  Google Scholar 

  51. Pakola SJ, Grunwald JE (1993) Effects of oxygen and carbon dioxide on human retinal circulation. Invest Ophthalmol Vis Sci 34:2866–2870

    PubMed  CAS  Google Scholar 

  52. Riva CE, Grunwald JE, Petrig BL (1983) Reactivity of the human retinal circulation to darkness: a laser Doppler velocimetry study. Invest Ophthalmol Vis Sci 24:737–740

    PubMed  CAS  Google Scholar 

  53. Feke GT, Zuckerman R, Green GJ, Weiter JJ (1983) Responses of human retinal blood flow to light and dark. Invest Ophthalmol Vis Sci 24:136–141

    PubMed  CAS  Google Scholar 

  54. Riva CE, Logean E, Petrig BL, Falsini B (2000) Effet de l’adaptation à l’obscurité sur le flux rétinien. Klin Monatsbl Augenheilkd 216:309–310

    PubMed  CAS  Google Scholar 

  55. Feke GT, Tagawa H, Yoshida A et al (1985) Retinal circulatory changes related to retinopathy progression in insulin-dependent diabetes mellitus. Ophthalmology 92:1517–1522

    PubMed  CAS  Google Scholar 

  56. Grunwald JE, Riva CE, Sinclair SH, Brucker AJ, Petrig BL (1986) Laser Doppler velocimetry study of retinal circulation in diabetes mellitus. Arch Ophthalmol 104:991–996

    PubMed  CAS  Google Scholar 

  57. Grunwald JE, Riva CE, Baine J, Brucker AJ (1992) Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest Ophthalmol Vis Sci 33:356–363

    PubMed  CAS  Google Scholar 

  58. Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1984) Altered retinal vascular response to 100% oxygen breathing in diabetes mellitus. Ophthal­mology 91:1447–1452

    PubMed  CAS  Google Scholar 

  59. Feke GT, Green GL, Goger DG, McMeel JW (1982) Laser Doppler measurements of the effect of panretinal photocoagulation on retinal blood flow. Ophthal­mology 89:757–762

    PubMed  CAS  Google Scholar 

  60. Grunwald JE, Riva CE, Brucker AJ, Sinclair SH, Petrig BL (1986) Effect of panretinal photocoagulation on retinal blood flow in proliferative diabetic retinopathy. Ophthalmology 93:590–595

    PubMed  CAS  Google Scholar 

  61. Grunwald JE, Riva CE, Belcaro GV, Hoffmann U, Bollinger A, Nicolaides AN (1994) Retinal blood flow in diabetes Laser Doppler. Med-Orion Publishing Company, London, pp 223–247

    Google Scholar 

  62. Grunwald JE (1991) Effect of two weeks of timolol maleate treatment on the normal retinal circulation. Invest Ophthalmol Vis Sci 32:39–45

    PubMed  CAS  Google Scholar 

  63. Grunwald JE, Delehanty J (1992) Effect of topical carteolol on the normal human retinal circulation. Invest Ophthalmol Vis Sci 33:1853–1856

    PubMed  CAS  Google Scholar 

  64. Grunwald JE, Mathur S, Dupont J (1997) Effects of dorzolamide hydrochloride 2% on the retinal circulation. Acta Ophthalmol Scand 75:236–238

    PubMed  CAS  Google Scholar 

  65. Bonner RF, Nossal R (1990) Principles of laser Doppler flowmetry. In: Shepherd AP, Öberg PA (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston, pp 57–72

    Google Scholar 

  66. Bonner RF, Nossal R, Havlin S, Weiss GH (1987) Model for photon migration in turbid biological media. J Opt Soc Am A 4:423–432

    PubMed  CAS  Google Scholar 

  67. Petrig BL, Riva CE (1991) Near-infrared retinal laser Doppler velocimetry and flowmetry: new delivery and detection techniques. Appl Opt 30:2073–2078

    PubMed  CAS  Google Scholar 

  68. Riva CE, Harino S, Shonat RD, Petrig BL (1991) Flicker evoked increase in optic nerve head blood flow in anesthetized cats. Neurosci Lett 128:291–296

    PubMed  CAS  Google Scholar 

  69. Venkataraman ST, Hudson C, Harvey E, Flanagan JG (2005) Impact of simulated light scatter on scanning laser Doppler flowmetry. Br J Ophthalmol 89:1192–1195

    PubMed  CAS  Google Scholar 

  70. Logean E, Geiser MH, Riva CE (2005) Laser Doppler instrument to investigate retinal neural activity-induced changes in optic nerve head blood flow. Opt Lasers Eng 43:591–602

    Google Scholar 

  71. Petrig BL, Riva CE (1996) Optic nerve head laser Doppler flowmetry: principles and computer analysis. In: Kaiser HJ, Flammer J, Hendrickson P (eds) Ocular blood flow. Karger, Basel, pp 120–127

    Google Scholar 

  72. Geiser MH, Diermann U, Riva CE (1999) Compact laser Doppler choroidal flowmeter. J Biomed Opt 4:459–464

    PubMed  CAS  Google Scholar 

  73. Geiser MH, Moret F, Riva CE (2001) Helmet-mounted Choroidal Laser Doppler flowmeter. Proc SPIE 4263:91–97

    Google Scholar 

  74. Koelle JS, Riva CE, Petrig BL, Cranstoun SD (1993) Depth of tissue sampling in the optic nerve head using laser Doppler flowmetry. Lasers Med Sci 8:49–54

    Google Scholar 

  75. Riva CE, Hero M, Titzé P, Petrig BL (1997) Autoregulation of human optic nerve head blood flow in response to acute changes in ocular perfusion pressure. Graefes Arch Clin Exp Ophthalmol 235:618–626

    PubMed  CAS  Google Scholar 

  76. Petrig BL, Riva CE, Hayreh SS (1999) Laser Doppler flowmetry and optic nerve head blood flow. Am J Ophthalmol 127:413–425

    PubMed  CAS  Google Scholar 

  77. Riva CE, Cranstoun SD, Mann RM, Barnes GE (1994) Local choroidal blood flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci 35:608–618

    PubMed  CAS  Google Scholar 

  78. Nilsson GE (1990) Perimed’s LDV Flowmeter. In: Shepherd AP, Öberg PÅ (eds) Laser-Doppler blood flowmetry. Kluwer Academic Publishers, Boston, pp 57–72

    Google Scholar 

  79. Sebag J, Delori FC, Feke GT et al (1986) Anterior optic nerve blood flow decreases in clinical neurogenic optic atrophy. Ophthalmology 93(6):858–865

    PubMed  CAS  Google Scholar 

  80. Joos KM, Pillunat LE, Knighton KW, Anderson DR, Feuer WJ (1997) Reproducibility of laser Doppler flowmetry in the human optic nerve head. J Glaucoma 6:212–216

    PubMed  CAS  Google Scholar 

  81. Grunwald JE, Piltz J, Hariprasad SM, Dupont J, Maguire MG (1999) Optic nerve blood flow in glaucoma: effect of systemic hypertension. Am J Ophthalmol 127:516–522

    PubMed  CAS  Google Scholar 

  82. Riva CE, Falsini B, Logean E (2001) Flicker-evoked responses of human optic nerve head blood flow: luminance versus chromatic modulation. Invest Ophthal­mol Vis Sci 42:756–762

    PubMed  CAS  Google Scholar 

  83. Grunwald JE, Hariprasad SM, Dupont J et al (1998) Foveolar choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 39:385–390

    PubMed  CAS  Google Scholar 

  84. Grunwald JE, Metelitsina TI, DuPont JC, Ying GS, Maguire MG (2005) Reduced foveolar choroidal blood flow in eyes with increasing AMD severity. Invest Ophthalmol Vis Sci 46:1033–1038

    PubMed  Google Scholar 

  85. Gugleta K, Orgül S, Flammer I, Gherghel D, Flammer J (2002) Reliability of confocal choroidal laser Doppler flowmetry. Invest Ophthalmol Vis Sci 43:723–728

    PubMed  Google Scholar 

  86. Geiser MH, Riva CE, Dorner GT, Diermann U, Luksch A, Schmetterer L (2000) Response of choroidal blood flow in the foveal region to hyperoxia and hyperoxia-hypercapnia. Curr Eye Res 21:669–676

    PubMed  CAS  Google Scholar 

  87. Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ (1997) Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res 64:737–744

    PubMed  CAS  Google Scholar 

  88. Movaffaghy A, Chamot SR, Petrig BL, Riva CE (1998) Blood flow in the human optic nerve head during isometric exercise. Exp Eye Res 67:561–568

    PubMed  CAS  Google Scholar 

  89. Harris A, Anderson DR, Pillunat L et al (1996) Laser Doppler flowmetry measurement of changes in human optic nerve head blood flow in response to blood gas perturbations. J Glaucoma 5:258–265

    PubMed  CAS  Google Scholar 

  90. Riva CE, Logean E, Falsini B (2005) Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina. Prog Retin Eye Res 24:183–215

    PubMed  Google Scholar 

  91. Schmetterer L, Wolzt M, Lexer F et al (1995) The Effect of hyperoxia and hypercapnia on fundus pulsations in the macular and optic disc region in healthy young men. Exp Eye Res 61:685–690

    PubMed  CAS  Google Scholar 

  92. Grunwald JE, Piltz J, Hariprasad SM, Dupont J (1998) Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci 39:2329–2336

    PubMed  CAS  Google Scholar 

  93. Piltz-Seymour JR (1999) Laser Doppler flowmetry of the optic nerve head in glaucoma. Surv Ophthalmol 43:S191–S198

    PubMed  Google Scholar 

  94. Piltz-Seymour JR, Grunwald JE, Hariprasad SM, Dupont J (2001) Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol 132:63–69

    PubMed  CAS  Google Scholar 

  95. Pournaras CJ, Riva CE (2001) Studies of the hemodynamics of the optic head nerve using laser Doppler flowmetry. J Fr Ophtalmol 24:199–205

    PubMed  CAS  Google Scholar 

  96. Riva CE, Salgarello T, Logean E, Colotto A, Galan E, Falsini B (2004) Flicker-evoked response measured at the optic disk rim is reduced in ocular hypertension and early glaucoma. Invest Ophthalmol Vis Sci 45:3662–3668

    PubMed  Google Scholar 

  97. Pournaras CJ, Riva CE, Bresson-Dumont H, de Gottrau P, Bechetoille A (2004) Regulation of optic nerve head blood flow in normal tension glaucoma patients. Eur J Ophthalmol 14:226–235

    PubMed  CAS  Google Scholar 

  98. Movaffaghy A, Lochhead J, Riva CE et al (2002) Feasibility of LDF measurements of optic nerve head blood flow in children with cerebral malaria. Microvasc Res 64:247–253

    PubMed  Google Scholar 

  99. Beare NAV, Riva CE, Taylor TE et al (2006) Changes in optic nerve head blood flow in children with cerebral malaria and acute papilloedema. J Neurol Neurosurg Psychiatry 77:1288–1290

    PubMed  CAS  Google Scholar 

  100. Riva CE, Titzé P, Hero M, Movaffaghy A (1997) Choroidal blood flow during isometric exercises. Invest Ophthalmol Vis Sci 38:2338–2343

    PubMed  CAS  Google Scholar 

  101. Riva CE, Titzé P, Petrig BL (1997) Effect of acute decrease of perfusion pressure on choroidal blood flow in humans. Invest Ophthalmol Vis Sci 38:1752–1760

    PubMed  CAS  Google Scholar 

  102. Fuchsjäger-Mayrl G, Luksch A, Malec M, Polska E, Wolzt M, Schmetterer L (2003) Role of endothelin-1 in choroidal blood flow regulation during isometric exercice in healthy humans. Invest Ophthalmol Vis Sci 44:728–733

    PubMed  Google Scholar 

  103. Fuchsjäger-Mayrl G, Kally B, Georgopoulos M et al (2004) Ocular blood flow and systemic blood pressure in patients with primary open-angle glaucoma and ocular hypertension. Invest Ophthalmol Vis Sci 45:834–839

    PubMed  Google Scholar 

  104. Longo A, Geiser MH, Riva CE (2004) Posture changes and subfoveal choroidal blood flow. Invest Ophthalmol Vis Sci 45:546–551

    PubMed  Google Scholar 

  105. Riva CE, Petrig BL (1995) Choroidal blood flow by laser Doppler flowmetry. Opt Eng 34(3):746–752

    Google Scholar 

  106. Longo A, Geiser MH, Riva CE (2000) Subfoveal choroidal blood flow in response to light-dark exposure. Invest Ophthalmol Vis Sci 41:2678–2683

    PubMed  CAS  Google Scholar 

  107. Fuchsjäger-Mayrl G, Polska E, Malec M, Schmetterer L (2001) Unilateral light-dark transitions affect choroidal blood flow in both eyes. Vision Res 41:2919–2924

    PubMed  Google Scholar 

  108. Fuchsjäger-Mayrl G, Malec M, Amoako-Mensah T, Kolodjaschna J, Schmetterer L (2003) Changes in choroidal blood flow during light/dark transitions are not altered by atropine or propranolol in healthy subjects. Vision Res 43:2185–2190

    PubMed  Google Scholar 

  109. Grunwald JE, Hariprasad SM, Dupont J (1998) Effect of aging on foveolar choroidal circulation. Arch Ophthalmol 116:150–154

    PubMed  CAS  Google Scholar 

  110. Pournaras CJ, Logean E, Riva CE (2004) Choroidal circulatory failure in AMD. Ophthalmic Res 36:201

    Google Scholar 

  111. Pournaras CJ, Logean E, Riva CE et al (2006) Regulation of subfoveal choroidal blood flow in age-related macular degeneration. Invest Ophthalmol Vis Sci 47:1581–1586

    PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks the “Fondazione Cassa di Risparmio in Bologna, Italy” for its generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles E. Riva D.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Riva, C.E. (2012). Laser Doppler Techniques for Ocular Blood Velocity and Flow. In: Schmetterer, L., Kiel, J. (eds) Ocular Blood Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69469-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69469-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69468-7

  • Online ISBN: 978-3-540-69469-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics