Skip to main content

Sex Differences in Nicotine Action

  • Chapter
Nicotine Psychopharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 192))

Abstract

Accumulating evidence suggests that the antecedents, consequences, and mechanisms of drug abuse and dependence are not identical in males and females and that gender may be an important variable in treatment and prevention. Although there has been a decline in smoking prevalence in developed countries, females are less successful in quitting. Tobacco use is accepted to be a form of addiction, which manifests sex differences. There is also evidence for sex differences in the central effects of nicotine in laboratory animals. Although social factors impact smoking substantially in humans, findings from nonhuman subjects in controlled experiments provide support that sex differences in nicotine/tobacco addiction have a biological basis. Differences in the pharmacokinetic properties of nicotine or the effect of gonadal hormones may underlie some but not all sex differences observed. Laboratory-based information is very important in developing treatment strategies. Literature findings suggest that including sex as a factor in nicotine/tobacco-related studies will improve our success rates in individually tailored smoking cessation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abreu-Villaca Y, Seidler FJ, et al (2004) Does prenatal nicotine exposure sensitize the brain to nicotine-induced neurotoxicity in adolescence? Neuropsychopharmacology 29(8):1440–1450

    PubMed  CAS  Google Scholar 

  • Acri JB (1994) Nicotine modulates effects of stress on acoustic startle reflexes in rats: dependence on dose, stressor and initial reactivity. Psychopharmacology 116(3):255–265

    PubMed  CAS  Google Scholar 

  • Adinoff B, Devous MD Sr, et al (2003) Gender differences in limbic responsiveness, by SPECT, following a pharmacologic challenge in healthy subjects. Neuroimage 18(3):697–706

    PubMed  Google Scholar 

  • Algan O, Furedy JJ, et al (1997) Effects of tobacco smoking and gender on interhemispheric cognitive function: performance and confidence measures. Behav Pharmacol 8(5):416–428

    PubMed  CAS  Google Scholar 

  • Andersen SL, Rutstein M, et al (1997) Sex differences in dopamine receptor overproduction and elimination. Neuroreport 8(6):1495–1498

    PubMed  CAS  Google Scholar 

  • Andersen SL, Teicher MH (2000) Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev 24(1):137–141

    PubMed  CAS  Google Scholar 

  • Balfour DJ, Wright AE, et al (2000) The putative role of extra-synaptic mesolimbic dopamine in the neurobiology of nicotine dependence. Behav Brain Res 113(1–2):73–83

    PubMed  CAS  Google Scholar 

  • Beatty WW (1979) Gonadal hormones and sex differences in nonreproductive behaviors in rodents: organizational and activational influences. Horm Behav 12(2):112–163

    PubMed  CAS  Google Scholar 

  • Becker JB (1999) Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav 64(4):803–812

    PubMed  CAS  Google Scholar 

  • Becker JB, Beer ME, et al (1984) Striatal dopamine release stimulated by amphetamine or potassium: influence of ovarian hormones and the light-dark cycle. Brain Res 311(1):157–160

    PubMed  CAS  Google Scholar 

  • Becker JB, Molenda H, et al (2001) Gender differences in the behavioral responses to cocaine and amphetamine. Implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci 937:172–187

    PubMed  CAS  Google Scholar 

  • Becker JB, Ramirez VD (1980) Dynamics of endogenous catecholamine release from brain fragments of male and female rats. Neuroendocrinology 31(1):18–25

    PubMed  CAS  Google Scholar 

  • Beckett AH, Gorrod JW, et al (1971) The effect of smoking on nicotine metabolism in vivo in man. J Pharm Pharmacol 23:62S–67S

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd (1984) Daily intake of nicotine during cigarette smoking. Clin Pharmacol Ther 35(4):499–504

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Jacob P 3rd (1997) Individual differences in nicotine kinetics and metabolism in humans. NIDA Res Monogr 173:48–64

    PubMed  CAS  Google Scholar 

  • Benowitz NL, Lessov-Schlaggar CN, et al (2006) Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther 79(5):480–488

    PubMed  CAS  Google Scholar 

  • Benwell ME, Balfour DJ (1997) Regional variation in the effects of nicotine on catecholamine overflow in rat brain. Eur J Pharmacol 325(1):13–20

    PubMed  CAS  Google Scholar 

  • Best JA, Hakstian AR (1978) A situation-specific model for smoking behavior. Addict Behav 3(2):79–92

    PubMed  CAS  Google Scholar 

  • Beuten J, Ma JZ, et al (2005) Significant association of BDNF haplotypes in European-American male smokers but not in European-American female or African-American smokers. Am J Med Genet B Neuropsychiatr Genet 139(1):73–80

    Google Scholar 

  • Beuten J, Payne TJ, et al (2006) Significant association of catechol-O-methyltransferase (COMT) haplotypes with nicotine dependence in male and female smokers of two ethnic populations. Neuropsychopharmacology 31(3):675–684

    PubMed  CAS  Google Scholar 

  • Blaha V, Yang ZJ, et al (1998) Systemic nicotine administration suppresses food intake via reduced meal sizes in both male and female rats. Acta Medica 41(4):167–173

    PubMed  CAS  Google Scholar 

  • Blanchard BA, Steindorf S, et al (1993) Sex differences in ethanol-induced dopamine release in nucleus accumbens and in ethanol consumption in rats. Alcohol Clin Exp Res 17(5):968–973

    PubMed  CAS  Google Scholar 

  • Booze RM, Welch MA, et al (1999) Behavioral sensitization following repeated intravenous nicotine administration: gender differences and gonadal hormones. Pharmacol Biochem Behav 64(4):827–839

    PubMed  CAS  Google Scholar 

  • Brady KT, Randall CL (1999) Gender differences in substance use disorders. Psychiatr Clin North Am 22(2):241–252

    PubMed  CAS  Google Scholar 

  • Brecht ML, O'Brien A, et al (2004) Methamphetamine use behaviors and gender differences. Addict Behav 29(1):89–106

    PubMed  Google Scholar 

  • Buka SL, Shenassa ED, et al (2003) Elevated risk of tobacco dependence among offspring of mothers who smoked during pregnancy: a 30-year prospective study. Am J Psychiatry 160(11):1978–1984

    PubMed  Google Scholar 

  • Burke AW, Broadhurst PL (1966) Behavioural correlates of the oestrous cycle in the rat. Nature 209(5019):223–224

    PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, et al (2001) Cue dependency of nicotine self-administration and smoking. Pharmacol Biochem Behav 70(4):515–530

    PubMed  CAS  Google Scholar 

  • Caggiula AR, Donny EC, et al (2002) Environmental stimuli promote the acquisition of nicotine self-administration in rats. Psychopharmacology 163(2):230–237

    PubMed  CAS  Google Scholar 

  • Caldarone BJ, Duman CH, et al (2000) Fear conditioning and latent inhibition in mice lacking the high affinity subclass of nicotinic acetylcholine receptors in the brain. Neuropharmacology 39(13):2779–2784

    PubMed  CAS  Google Scholar 

  • Carr GD, Phillips AG, et al (1988) Independence of amphetamine reward from locomotor stimulation demonstrated by conditioned place preference. Psychopharmacology 94(2):221–226

    PubMed  CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, et al (2005) Sex differences in the contribution of nicotine and non-pharmacological stimuli to nicotine self-administration in rats. Psychopharmacology 180(2): 258–266

    PubMed  CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, et al (2006a) Operant responding for conditioned and unconditioned reinforcers in rats is differentially enhanced by the primary reinforcing and reinforcement-enhancing effects of nicotine. Psychopharmacology 189(1):27–36

    CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, et al (2006b) Complex interactions between nicotine and nonphar-macological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology 184(3–4):353–366

    CAS  Google Scholar 

  • Chaudhri N, Caggiula AR, et al (2007) Self-administered and noncontingent nicotine enhance reinforced operant responding in rats: impact of nicotine dose and reinforcement schedule. Psychopharmacology 190(3):353–362

    PubMed  CAS  Google Scholar 

  • Cheeta S, Irvine EE, et al (2001) In adolescence, female rats are more sensitive to the anxiolytic effect of nicotine than are male rats. Neuropsychopharmacology 25(4):601–607

    PubMed  CAS  Google Scholar 

  • Clarke PB, Fu DS, et al (1988) Evidence that mesolimbic dopaminergic activation underlies the locomotor stimulant action of nicotine in rats. J Pharmacol Exp Ther 246(2):701–708

    PubMed  CAS  Google Scholar 

  • Collins AC, Miner LL, et al (1988) Genetic influences on acute responses to nicotine and nicotine tolerance in the mouse. Pharmacol Biochem Behav 30(1):269–278

    PubMed  CAS  Google Scholar 

  • Colrain IM, Mangan GL, et al (1992) Effects of post-learning smoking on memory consolidation. Psychopharmacology 108(4):448–451

    PubMed  CAS  Google Scholar 

  • Cornelius MD, Leech SL, et al (2000) Prenatal tobacco exposure: is it a risk factor for early tobacco experimentation? Nicotine Tob Res 2(1):45–52

    PubMed  CAS  Google Scholar 

  • Craft RM, Milholland RB (1998) Sex differences in cocaine- and nicotine-induced antinociception in the rat. Brain Res 809(1):137–140

    PubMed  CAS  Google Scholar 

  • Cronan T, Conrad J, et al (1985) Effects of chronically administered nicotine and saline on motor activity in rats. Pharmacol Biochem Behav 22(5):897–899

    PubMed  CAS  Google Scholar 

  • Curtis L, Buisson B, et al (2002) Potentiation of human alpha4beta2 neuronal nicotinic acetyl-choline receptor by estradiol. Mol Pharmacol 61(1):127–135

    PubMed  CAS  Google Scholar 

  • Dalton JC, Vickers GJ, et al (1986) Increased self-administration of cocaine following haloperidol: sex-dependent effects of the antiestrogen tamoxifen. Pharmacol Biochem Behav 25(3):497–501

    PubMed  CAS  Google Scholar 

  • Damsma G, Day J, et al (1989) Lack of tolerance to nicotine-induced dopamine release in the nucleus accumbens. Eur J Pharmacol 168(3):363–368

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85(14):5274–5278

    PubMed  Google Scholar 

  • Dluzen DE, Anderson LI (1997) Estrogen differentially modulates nicotine-evoked dopamine release from the striatum of male and female rats. Neurosci Lett 230(2):140–142

    PubMed  CAS  Google Scholar 

  • Dluzen DE, Ramirez VD (1990) In vitro progesterone modulation of amphetamine-stimulated dopamine release from the corpus striatum of ovariectomized estrogen-treated female rats: response characteristics. Brain Res 517(1–2):117–122

    PubMed  CAS  Google Scholar 

  • Donny EC, Caggiula AR, et al (2000) Nicotine self-administration in rats: estrous cycle effects, sex differences and nicotinic receptor binding. Psychopharmacology 151(4):392–405

    PubMed  CAS  Google Scholar 

  • Donny EC, Chaudhri N, et al (2003) Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: implications for nicotine self-administration and reinforcement. Psychopharmacology 169(1):68–76

    PubMed  CAS  Google Scholar 

  • Dorce VA, Palermo-Neto J (1994) Behavioral and neurochemical changes induced by aging indopaminergic systems of male and female rats. Physiol Behav 56(5):1015–1019

    PubMed  CAS  Google Scholar 

  • Elliott BM, Faraday MM, et al (2004) Effects of nicotine on elevated plus maze and locomotor activity in male and female adolescent and adult rats. Pharmacol Biochem Behav 77(1):21–28

    PubMed  CAS  Google Scholar 

  • Epperson CN, O'Malley S, et al (2005) Sex, GABA, and nicotine: the impact of smoking on cortical GABA levels across the menstrual cycle as measured with proton magnetic resonance spectroscopy. Biol Psychiatry 57(1):44–48

    PubMed  CAS  Google Scholar 

  • Fallon JH, Keator DB, et al (2005) Gender: a major determinant of brain response to nicotine. Int J Neuropsychopharmacol 8(1):17–26

    PubMed  CAS  Google Scholar 

  • Faraday MM, Blakeman KH, et al (2005) Strain and sex alter effects of stress and nicotine on feeding, body weight, and HPA axis hormones. Pharmacol Biochem Behav 80(4):577–589

    PubMed  CAS  Google Scholar 

  • Faraday MM, Elliott BM, et al (2001) Adult vs. adolescent rats differ in biobehavioral responses to chronic nicotine administration. Pharmacol Biochem Behav 70(4):475–489

    PubMed  CAS  Google Scholar 

  • Field M, Duka T (2004) Cue reactivity in smokers: the effects of perceived cigarette availability and gender. Pharmacol Biochem Behav 78(3):647–652

    PubMed  CAS  Google Scholar 

  • File SE, Dinnis AK, et al (2002) Mood differences between male and female light smokers and nonsmokers. Pharmacol Biochem Behav 72(3):681–689

    PubMed  CAS  Google Scholar 

  • File SE, Fluck E, et al (2001) Nicotine has calming effects on stress-induced mood changes in females, but enhances aggressive mood in males. Int J Neuropsychopharmacol 4(4):371–376

    PubMed  CAS  Google Scholar 

  • Fiore MC (1992) Trends in cigarette smoking in the United States. The epidemiology of tobacco use. Med Clin North Am 76(2):289–303

    PubMed  CAS  Google Scholar 

  • Frank E, Carpenter LL, et al (1988) Sex differences in recurrent depression: are there any that are significant? Am J Psychiatry 145(1):41–45

    PubMed  CAS  Google Scholar 

  • Frith CD (1971) Smoking behaviour and its relation to the smoker's immediate experience. Br J Soc Clin Psychol 10(1):73–78

    PubMed  CAS  Google Scholar 

  • Furedy JJ, Algan O, et al (1999) Sexually dimorphic effect of an acute smoking manipulation on skin resistance but not on heart-rate during a cognitive verbal task. Integr Physiol Behav Sci 34(4):219–226

    PubMed  CAS  Google Scholar 

  • Fuxe K, Andersson K, et al (1989) Neuroendocrine actions of nicotine and of exposure to cigarette smoke: medical implications. Psychoneuroendocrinology 14(1–2):19–41

    PubMed  CAS  Google Scholar 

  • Genedani S, Bernardi M, et al (1983) Sex-linked differences in avoidance learning in the offspring of rats treated with nicotine during pregnancy. Psychopharmacology 80(1):93–95

    PubMed  CAS  Google Scholar 

  • Gritz ER, Nielsen IR, et al (1996) Smoking cessation and gender: the influence of physiological, psychological, and behavioral factors. J Am Med Womens Assoc 51(1–2):35–42

    PubMed  CAS  Google Scholar 

  • Grunberg NE, Bowen DJ, et al (1986) Effects of nicotine on body weight and food consumption in female rats. Psychopharmacology 90(1):101–105

    PubMed  CAS  Google Scholar 

  • Grunberg NE, Winders SE, et al (1987) Sex differences in nicotine's effects on consummatory behavior and body weight in rats. Psychopharmacology 91(2):221–225

    PubMed  CAS  Google Scholar 

  • Hamdani N, Ades J, et al (2006) Heritability and candidate genes in tobacco use. Encephale 32(6 Pt 1):966–975

    PubMed  CAS  Google Scholar 

  • Harris RE, Zang EA, et al (1993) Race and sex differences in lung cancer risk associated with cigarette smoking. Int J Epidemiol 22(4):592–599

    PubMed  CAS  Google Scholar 

  • Harrod SB, Booze RM, et al (2007) Sex differences in nicotine levels following repeated intravenous injection in rats are attenuated by gonadectomy. Pharmacol Biochem Behav 86(1): 32–36

    PubMed  CAS  Google Scholar 

  • Harrod SB, Mactutus CF, et al (2004) Sex differences and repeated intravenous nicotine: behavioral sensitization and dopamine receptors. Pharmacol Biochem Behav 78(3):581–592

    PubMed  CAS  Google Scholar 

  • Hatchell PC, Collins AC (1980) The influence of genotype and sex on behavioral sensitivity to nicotine in mice. Psychopharmacology 71(1):45–49

    PubMed  CAS  Google Scholar 

  • Henschke CI, Miettinen OS (2004) Women's susceptibility to tobacco carcinogens. Lung Cancer 43(1):1–5

    PubMed  Google Scholar 

  • Henschke CI, Yip R, et al (2006) Women's susceptibility to tobacco carcinogens and survival after diagnosis of lung cancer. JAMA 296(2):180–184

    PubMed  Google Scholar 

  • Hill AL, Roe DJ, et al (2000) Efficacy of transdermal nicotine in reducing post-cessation weight gain in a Hispanic sample. Nicotine Tob Res 2(3):247–253

    PubMed  CAS  Google Scholar 

  • Hogle JM, Curtin JJ (2006) Sex differences in negative affective response during nicotine with drawal. Psychophysiology 43(4):344–356

    PubMed  Google Scholar 

  • Hughes JR, Gust SW, et al (1991) Symptoms of tobacco withdrawal. A replication and extension. Arch Gen Psychiatry 48(1):52–59

    PubMed  CAS  Google Scholar 

  • Ikard FF, Tomkins S (1973) The experience of affect as a determinant of smoking behavior: a series of validity studies. J Abnorm Psychol 81(2):172–181

    PubMed  CAS  Google Scholar 

  • Imperato A, Mulas A, et al (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132(2–3):337–338

    PubMed  CAS  Google Scholar 

  • Jacobsen LK, Slotkin TA, et al (2007) Gender-specific effects of prenatal and adolescent exposure to tobacco smoke on auditory, visual attention. Neuropsychopharmacology 32(12):2453–2464

    PubMed  CAS  Google Scholar 

  • Jung ME, Wallis CJ, et al (2000) Sex differences in nicotine substitution to a pentylenetetrazol discriminative stimulus during ethanol withdrawal in rats. Psychopharmacology 149(3): 235–240

    PubMed  CAS  Google Scholar 

  • Kandel DB, Wu P, et al (1994) Maternal smoking during pregnancy and smoking by adolescent daughters. Am J Public Health 84(9):1407–1413

    PubMed  CAS  Google Scholar 

  • Kanit L, Taskiran D, et al (1998) Nicotine interacts with sex in affecting rat choice between lookout and navigational cognitive styles in the Morris water maze place learning task. Brain Res Bull 46(5):441–445

    PubMed  CAS  Google Scholar 

  • Kanyt L, Stolerman IP, et al (1999) Influence of sex and female hormones on nicotine-induced changes in locomotor activity in rats. Pharmacol Biochem Behav 62(1):179–187

    PubMed  CAS  Google Scholar 

  • Kimura D (1999) Sex and cognition. A Bradford Book, MIT Press, Cambridge

    Google Scholar 

  • Klein LC, Corwin EJ, et al (2004a) Leptin, hunger, and body weight: Influence of gender, tobacco smoking, and smoking abstinence. Addict Behav 29(5):921–927

    Google Scholar 

  • Klein LC, Stine MM, et al (2003) Laternal nicotine exposure increases nicotine preference in periadolescent male but not female C57B1/6J mice. Nicotine Tob Res 5(1):117–124

    PubMed  Google Scholar 

  • Klein LC, Stine MM, et al (2004b) Sex differences in voluntary oral nicotine consumption by adolescent mice: a dose-response experiment. Pharmacol Biochem Behav 78(1):13–25

    CAS  Google Scholar 

  • Klesges RC, Klesges LM, et al (1991) Relationship of smoking status, energy balance, and body weight: analysis of the Second National Health and Nutrition Examination Survey. J Consult Clin Psychol 59(6):899–905

    PubMed  CAS  Google Scholar 

  • Klinteberg BA, Levander SE, et al (1987) Cognitive sex differences: speed and problem-solving strategies on computerized neuropsychological tasks. Percept Mot Skills 65(3):683–697

    PubMed  CAS  Google Scholar 

  • Koylu E, Demirgoren S, et al (1997) Sex difference in up-regulation of nicotinic acetylcholine receptors in rat brain. Life Sci 61(12):PL185–PL190

    CAS  Google Scholar 

  • Ksir C, Hakan RL, et al (1987) Chronic nicotine and locomotor activity: influences of exposure dose and test dose. Psychopharmacology (Berl) 92(1):25–29

    CAS  Google Scholar 

  • Kyerematen GA, Owens GF, et al (1988) Sexual dimorphism of nicotine metabolism and distribution in the rat. Studies in vivo and in vitro. Drug Metab Dispos 16(6):823–828

    PubMed  CAS  Google Scholar 

  • Kyerematen GA, Vesell ES (1991) Metabolism of nicotine. Drug Metab Rev 23(1–2):3–41

    PubMed  CAS  Google Scholar 

  • Laakso A, Vilkman H, et al (2002) Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry 52(7):759–763

    PubMed  CAS  Google Scholar 

  • Levin ED, Briggs SJ, et al (1992) Persistence of chronic nicotine-induced cognitive facilitation. Behav Neural Biol 58(2):152–158

    PubMed  CAS  Google Scholar 

  • Levin ED, Morgan MM, et al (1987) Chronic nicotine and withdrawal effects on body weight and food and water consumption in female rats. Physiol Behav 39(4):441–444

    PubMed  CAS  Google Scholar 

  • Levin ED, Wilkerson A, et al (1996) Prenatal nicotine effects on memory in rats: pharmacological and behavioral challenges. Brain Res Dev Brain Res 97(2):207–215

    PubMed  CAS  Google Scholar 

  • Li MD, Beuten J, et al (2005) Ethnic- and gender-specific association of the nicotinic acetyl-choline receptor alpha4 subunit gene (CHRNA4) with nicotine dependence. Hum Mol Genet 14(9):1211–1219

    PubMed  CAS  Google Scholar 

  • Lynch WJ, Roth ME, et al (2002) Biological basis of sex differences in drug abuse: preclinical and clinical studies. Psychopharmacology 164(2):121–137

    PubMed  CAS  Google Scholar 

  • Mangan GL, Golding JF (1983) The effects of smoking on memory consolidation. J Psychol 115:65–77

    PubMed  CAS  Google Scholar 

  • Mansvelder HD, McGehee DS (2002) Cellular and synaptic mechanisms of nicotine addiction. J Neurobiol 53(4):606–617

    PubMed  CAS  Google Scholar 

  • Marks MJ, Stitzel JA, et al (1985) Time course study of the effects of chronic nicotine infusion on drug response and brain receptors. J Pharmacol Exp Ther 235(3):619–628

    PubMed  CAS  Google Scholar 

  • Marshall DL, Redfern PH, et al (1997) Presynaptic nicotinic modulation of dopamine release in the three ascending pathways studied by in vivo microdialysis: comparison of naive and chronic nicotine-treated rats. J Neurochem 68(4):1511–1519

    PubMed  CAS  Google Scholar 

  • Martinez D, Gil R, et al (2005) Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 58(10):779–786

    PubMed  CAS  Google Scholar 

  • McClernon FJ, Kozink RV, Rose JE (2007) Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology 33(9):2148–2147

    PubMed  Google Scholar 

  • McEwen BS (2002) Sex, stress and the hippocampus: allostasis, allostatic load and the aging process. Neurobiol Aging 23(5):921–939

    PubMed  CAS  Google Scholar 

  • McNair E, Bryson R (1983) Effects of nicotine on weight change and food consumption in rats. Pharmacol Biochem Behav 18(3):341–344

    PubMed  CAS  Google Scholar 

  • Miller MM, Silver J, et al (1984) Effects of gonadal steroids on the in vivo binding of [125I]alpha-bungarotoxin to the suprachiasmatic nucleus. Brain Res 290(1):67–75

    PubMed  CAS  Google Scholar 

  • Mochizuki T, Villemagne VL, et al (1998) Nicotine induced up-regulation of nicotinic receptors in CD-1 mice demonstrated with an in vivo radiotracer: gender differences. Synapse 30(1): 116–118

    PubMed  CAS  Google Scholar 

  • Morishima HO, Abe Y, et al (1993) Gender-related differences in cocaine toxicity in the rat. J Lab Clin Med 122(2):157–163

    PubMed  CAS  Google Scholar 

  • Munro CA, McCaul ME, et al (2006) Sex differences in striatal dopamine release in healthy adults. Biol Psychiatry 59(10):966–974

    PubMed  CAS  Google Scholar 

  • Niaura R, Bock B, et al (2001) Maternal transmission of nicotine dependence: psychiatric, neu-rocognitive and prenatal factors. Am J Addict 10(1):16–29

    PubMed  CAS  Google Scholar 

  • Niaura R, Shadel WG, et al (1998) Individual differences in cue reactivity among smokers trying to quit: effects of gender and cue type. Addict Behav 23(2):209–224

    PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, et al (1994) Systemic nicotine-induced dopamine release in the rat nucleus accumbens is regulated by nicotinic receptors in the ventral tegmental area. Synapse 16(1): 36–44

    PubMed  CAS  Google Scholar 

  • Nisell M, Nomikos GG, et al (1996) Condition-independent sensitization of locomotor stimulation and mesocortical dopamine release following chronic nicotine treatment in the rat. Synapse 22(4):369–381

    PubMed  CAS  Google Scholar 

  • Ogden J, Fox P (1994) Examination of the use of smoking for weight control in restrained and unrestrained eaters. Int J Eat Disord 16(2):177–185

    PubMed  CAS  Google Scholar 

  • Palmatier MI, Evans-Martin FF, et al (2006) Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology 184(3–4): 391–400

    PubMed  CAS  Google Scholar 

  • Parrott AC (1998) Nesbitt's Paradox resolved? Stress and arousal modulation during cigarette smoking. Addiction 93(1):27–39

    PubMed  CAS  Google Scholar 

  • Pauly JR (2008) Gender differences in tobacco smoking dynamics and the neuropharmacological actions of nicotine. Front Biosci 13:505–516

    PubMed  CAS  Google Scholar 

  • Peeke SC, Peeke HV (1984) Attention, memory, and cigarette smoking. Psychopharmacology 84(2):205–216

    PubMed  CAS  Google Scholar 

  • Perkins KA (1995) Individual variability in responses to nicotine. Behav Genet 25(2):119–132

    PubMed  CAS  Google Scholar 

  • Perkins KA (1999) Nicotine discrimination in men and women. Pharmacol Biochem Behav 64(2):295–299

    PubMed  CAS  Google Scholar 

  • Perkins KA (2001) Smoking cessation in women. Special considerations. CNS Drugs 15(5): 391–411

    PubMed  CAS  Google Scholar 

  • Perkins KA, Donny E, et al (1999) Sex differences in nicotine effects and self-administration: review of human and animal evidence. Nicotine Tob Res 1(4):301–315

    PubMed  CAS  Google Scholar 

  • Perkins KA, Epstein LH, et al (1991) Effects of dose, gender, and level of physical activity on acute metabolic response to nicotine. Pharmacol Biochem Behav 40(2):203–208

    PubMed  CAS  Google Scholar 

  • Perkins KA, Epstein LH, et al (1992) Effects of nicotine on hunger and eating in male and female smokers. Psychopharmacology 106(1):53–59

    PubMed  CAS  Google Scholar 

  • Perkins KA, Gerlach D, et al (2001) Sex differences in the subjective and reinforcing effects of visual and olfactory cigarette smoke stimuli. Nicotine Tob Res 3(2):141–150

    PubMed  CAS  Google Scholar 

  • Perkins KA, Grobe JE, et al (1992) Paradoxical effects of smoking on subjective stress versus cardiovascular arousal in males and females. Pharmacol Biochem Behav 42(2):301–311

    PubMed  CAS  Google Scholar 

  • Perkins KA, Marcus MD, et al (2001) Cognitive-behavioral therapy to reduce weight concerns improves smoking cessation outcome in weight-concerned women. J Consult Clin Psychol 69(4):604–613

    PubMed  CAS  Google Scholar 

  • Perkins KA and Scott J (2008) Sex differences in long-term smoking cessation rates due to nicotine patch. Nicotine Top Res. 10(7):1245–1250

    CAS  Google Scholar 

  • Perkins KA, Sexton JE, et al (1994a) Acute effects of tobacco smoking on hunger and eating in male and female smokers. Appetite 22(2):149–158

    CAS  Google Scholar 

  • Perkins KA, Sexton JE, et al (1994b) Acute thermogenic effects of nicotine combined with caffeine during light physical activity in male and female smokers. Am J Clin Nutr 60(3):312–319

    CAS  Google Scholar 

  • Perkins KA, Sexton JE, et al (1994c) Comparison of acute subjective and heart rate effects of nicotine intake via tobacco smoking versus nasal spray. Pharmacol Biochem Behav 47(2):295–299

    CAS  Google Scholar 

  • Pilotte NS, Burt DR, et al (1984) Ovarian steroids modulate the release of dopamine into hypophysial portal blood and the density of anterior pituitary [3H]spiperone-binding sites in ovariectomized rats. Endocrinology 114(6):2306–2311

    PubMed  CAS  Google Scholar 

  • Pogun S (2001) Sex differences in brain and behavior: emphasis on nicotine, nitric oxide and place learning. Int J Psychophysiol 42(2):195–208

    PubMed  CAS  Google Scholar 

  • Pomerleau CS, Kurth CL (1996) Willingness of female smokers to tolerate postcessation weight gain. J Subst Abuse 8(3):371–378

    PubMed  CAS  Google Scholar 

  • Pomerleau CS, Pomerleau OF, et al (2000) Short-term weight gain in abstaining women smokers. J Subst Abuse Treat 18(4):339–342

    PubMed  CAS  Google Scholar 

  • Pontieri FE, Tanda G, et al (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382(6588):255–257

    PubMed  CAS  Google Scholar 

  • Pratt MW, Golding G, et al (1988) From inquiry to judgment: age and sex differences in patterns of adult moral thinking and information-seeking. Int J Aging Hum Dev 27(2):109–124

    PubMed  CAS  Google Scholar 

  • Reavill C, Stolerman IP (1990) Locomotor activity in rats after administration of nicotinic agonists intracerebrally. Br J Pharmacol 99(2):273–278

    PubMed  CAS  Google Scholar 

  • Rhodes ME, O'Toole SM, et al (2001a) Male-female differences in rat hypothalamic-pituitary-adrenal axis responses to nicotine stimulation. Brain Res Bull 54(6):681–688

    CAS  Google Scholar 

  • Rhodes ME, O'Toole SM, et al (2001b) Sexual diergism in rat hypothalamic-pituitary-adrenal axis responses to cholinergic stimulation and antagonism. Brain Res Bull 54(1):101–113

    CAS  Google Scholar 

  • Rhodes ME, Rubin RT (1999) Functional sex differences (‘sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. Brain Res Brain Res Rev 30(2):135–152

    PubMed  CAS  Google Scholar 

  • Rinker JA, Busse GD, et al (2008) An assessment of sex differences in nicotine-induced conditioned taste aversions. Pharmacol Biochem Behav 88(4):427–431

    PubMed  CAS  Google Scholar 

  • Roberts DC, Bennett SA, et al (1989) The estrous cycle affects cocaine self-administration on a progressive ratio schedule in rats. Psychopharmacology 98(3):408–411

    PubMed  CAS  Google Scholar 

  • Rodier WI (1971) Progesterone-estrogen interactions in the control of activity-wheel running in the female rat. J Comp Physiol Psychol 74(3):365–373

    PubMed  CAS  Google Scholar 

  • Rose JE, Behm FM, et al (1993) Role of nicotine dose and sensory cues in the regulation of smoke intake. Pharmacol Biochem Behav 44(4):891–900

    PubMed  CAS  Google Scholar 

  • Rose JE, Levin ED (1991) Inter-relationships between conditioned and primary reinforcement in the maintenance of cigarette smoking. Br J Addict 86(5):605–609

    PubMed  CAS  Google Scholar 

  • Rosecrans JA (1971) Effects of nicotine on brain area 5-hydroxytryptamine function in male and female rats separated for differences of activity. Eur J Pharmacol 16(1):123–127

    PubMed  CAS  Google Scholar 

  • Rosecrans JA (1972) Brain area nicotine levels in male and female rats with different levels of spontaneous activity. Neuropharmacology 11(6):863–870

    PubMed  CAS  Google Scholar 

  • Rosecrans JA, Schechter MD (1972) Brain area nicotine levels in male and female rats of two strains. Arch Int Pharmacodyn Ther 196(1):46–54

    PubMed  CAS  Google Scholar 

  • Saigusa T, Takada K, et al (1997) Dopamine efflux in the rat nucleus accumbens evoked by dopamine receptor stimulation in the entorhinal cortex is modulated by oestradiol and progesterone. Synapse 25(1):37–43

    PubMed  CAS  Google Scholar 

  • SAMHSA (2007) 2006 National survey on drug use and health: national findings. Office of Applied Studies, US Department of Health and Human Services, publication no. SMA 07-4293. Rockville, MD

    Google Scholar 

  • Schechter MD, Rosecrans JA (1972) Nicotine as a discriminative cue in rats: inability of related drugs to produce a nicotine-like cueing effect. Psychopharmacologia 27(4):379–387

    PubMed  CAS  Google Scholar 

  • Schepers G, Rustemeier K, et al (1993) Metabolism of S-nicotine in noninduced and aroclor-induced rats. Eur J Drug Metab Pharmacokinet 18(2):187–197

    PubMed  CAS  Google Scholar 

  • Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220(4593):214–216

    PubMed  CAS  Google Scholar 

  • Schwartz RD, Kellar KJ (1985) In vivo regulation of [3H]acetylcholine recognition sites in brain by nicotinic cholinergic drugs. J Neurochem 45(2):427–433

    PubMed  CAS  Google Scholar 

  • Shahan TA, Bickel WK, et al (1999) Comparing the reinforcing efficacy of nicotine containing and de-nicotinized cigarettes: a behavioral economic analysis. Psychopharmacology 147(2): 210–216

    PubMed  CAS  Google Scholar 

  • Shiffman S, Paton SM (1999) Individual differences in smoking: gender and nicotine addiction. Nicotine Tob Res 1(Suppl 2):S153–S157; discussion S165–S166

    PubMed  Google Scholar 

  • Siu EC, Wildenauer DB, et al (2006) Nicotine self-administration in mice is associated with rates of nicotine inactivation by CYP2A5. Psychopharmacology 184(3–4):401–408

    PubMed  CAS  Google Scholar 

  • Slotkin TA, MacKillop EA, et al (2007) Permanent, sex-selective effects of prenatal or adolescent nicotine exposure, separately or sequentially, in rat brain regions: indices of cholinergic and serotonergic synaptic function, cell signaling, and neural cell number and size at 6 months of age. Neuropsychopharmacology 32(5):1082–1097

    PubMed  CAS  Google Scholar 

  • Slotkin TA, Seidler FJ (2007) A unique role for striatal serotonergic systems in the withdrawal from adolescent nicotine administration. Neurotoxicol Teratol 29(1):10–16

    PubMed  CAS  Google Scholar 

  • Slotkin TA, Southard MC, et al (2004) Alpha7 nicotinic acetylcholine receptors targeted by cholinergic developmental neurotoxicants: nicotine and chlorpyrifos. Brain Res Bull 64(3):227–235

    PubMed  CAS  Google Scholar 

  • Spielberger CD (1986). Psychological determinants of smoking behavior. In: Tollison RD (ed) Smoking and society: Toward a more balanced assessment. D. C. Heath, Lexington, MA, pp 89–134

    Google Scholar 

  • Spring B, Pagoto S, et al (2003) Altered reward value of carbohydrate snacks for female smokers withdrawn from nicotine. Pharmacol Biochem Behav 76(2):351–360

    PubMed  CAS  Google Scholar 

  • Staley JK, Krishnan-Sarin S, et al (2001) Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 41(4):275–284

    PubMed  CAS  Google Scholar 

  • Tanapat P, Hastings NB, et al (1999) Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci 19(14):5792–5801

    PubMed  CAS  Google Scholar 

  • Thun MJ, Henley SJ, et al (2002) Tobacco use and cancer: an epidemiologic perspective for geneticists. Oncogene 21(48):7307–7325

    PubMed  CAS  Google Scholar 

  • Toneatto A, Sobell LC, et al (1992) Gender issues in the treatment of abusers of alcohol, nicotine, and other drugs. J Subst Abuse 4(2):209–218

    PubMed  CAS  Google Scholar 

  • Toth E, Sershen H, et al (1992) Effect of nicotine on extracellular levels of neurotransmitters assessed by microdialysis in various brain regions: role of glutamic acid. Neurochem Res 17(3):265–271

    PubMed  CAS  Google Scholar 

  • Trauth JA, Seidler FJ, et al (1999) Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res 851(1–2):9–19

    PubMed  CAS  Google Scholar 

  • Trauth JA, Seidler FJ, et al (2000) Persistent and delayed behavioral changes after nicotine treatment in adolescent rats. Brain Res 880(1–2):167–172

    PubMed  CAS  Google Scholar 

  • Tyndale RF, Sellers EM (2002) Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Ther Drug Monit 24(1):163–171

    PubMed  CAS  Google Scholar 

  • Valera S, Ballivet M, et al (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89(20):9949–9953

    PubMed  CAS  Google Scholar 

  • van Haaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39(4):923–927

    PubMed  Google Scholar 

  • Van Hartesveldt C, Joyce JN (1986) Effects of estrogen on the basal ganglia. Neurosci Biobehav Rev 10(1):1–14

    PubMed  Google Scholar 

  • Villegier AS, Salomon L, et al (2006) Monoamine oxidase inhibitors allow locomotor and rewarding responses to nicotine. Neuropsychopharmacology 31(8):1704–1713

    PubMed  CAS  Google Scholar 

  • von Ziegler NI, Schlumpf M, et al (1991) Prenatal nicotine exposure selectively affects perinatal forebrain aromatase activity and fetal adrenal function in male rats. Brain Res Dev Brain Res 62(1):23–31

    Google Scholar 

  • Wang GH (1923) The relation between spontaneous activity and the oestrous cycle in the white rat. Comp Psychol Monogr 2:1–27

    Google Scholar 

  • Warburton DM, Rusted JM, et al (1992) Patterns of facilitation of memory by nicotine. Behav Pharmacol 3(4):375–378

    PubMed  CAS  Google Scholar 

  • Westman EC, Behm FM, et al (1996) Dissociating the nicotine and airway sensory effects of smoking. Pharmacol Biochem Behav 53(2):309–315

    PubMed  CAS  Google Scholar 

  • Wetherington CL (2007) Sex-gender differences in drug abuse: a shift in the burden of proof? Exp Clin Psychopharmacol 15(5):411–417

    PubMed  Google Scholar 

  • Wetter DW, Kenford SL, et al (1999) Gender differences in smoking cessation. J Consult Clin Psychol 67(4):555–562

    PubMed  CAS  Google Scholar 

  • Wise RA (1987) The role of reward pathways in the development of drug dependence. Pharmacol Ther 35(1–2):227–263

    PubMed  CAS  Google Scholar 

  • Wise RA, Bozarth MA (1987) A psychomotor stimulant theory of addiction. Psychol Rev 94(4):469–492

    PubMed  CAS  Google Scholar 

  • Xiao L, Becker JB (1994) Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy. Neurosci Lett 180(2):155–158

    PubMed  CAS  Google Scholar 

  • Xu Z, Seidler FJ, et al (2002) Adolescent nicotine administration alters serotonin receptors and cell signaling mediated through adenylyl cyclase. Brain Res 951(2):280–292

    PubMed  CAS  Google Scholar 

  • Xu Z, Seidler FJ, et al (2003) Sex-selective hippocampal alterations after adolescent nicotine administration: effects on neurospecific proteins. Nicotine Tob Res 5(6):955–960

    PubMed  CAS  Google Scholar 

  • Yilmaz O, Kanit L, et al (1997) Effects of nicotine on active avoidance learning in rats: sex differences. Behav Pharmacol 8(2–3):253–260

    PubMed  CAS  Google Scholar 

  • Zang EA, Wynder EL (1996) Differences in lung cancer risk between men and women: examination of the evidence. J Natl Cancer Inst 88(3–4):183–192

    PubMed  CAS  Google Scholar 

  • Zeman MV, Hiraki L, et al (2002) Gender differences in tobacco smoking: higher relative exposure to smoke than nicotine in women. J Womens Health Gend Based Med 11(2):147–153

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pogun, S., Yararbas, G. (2009). Sex Differences in Nicotine Action. In: Henningfield, J.E., London, E.D., Pogun, S. (eds) Nicotine Psychopharmacology. Handbook of Experimental Pharmacology, vol 192. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69248-5_10

Download citation

Publish with us

Policies and ethics