Skip to main content

Adaptive Contouring of the Target Volume and Organs at Risk

  • Chapter
  • First Online:
Gynecologic Radiation Therapy

Abstract

This chapter provides an overview of adaptive delineation of gross tumor volume (GTV), clinical target volume (CTV), and organs at risk (OAR) in gynecological 3D image-guided adaptive brachytherapy (IGABT). Contouring in cervical cancer brachytherapy (BT) is presented in detail, as formal recommendations for endometrial and vaginal disease have not yet been standardized. Caveats and pitfalls related to the issue of delineation in the context of brachytherapy-related dose inhomogeneity and steep dose gradients are addressed. We also present an overview of published interobserver studies in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ICRU, International Commission of Radiation Units and Measurements. Dose and volume specification for reporting intracavitary therapy in gynaecology. ICRU report 38, Bethesda, MD; 1985.

    Google Scholar 

  2. Pötter R, Van Limbergen E, Wambersie A. Reporting in brachytherapy. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E, editors. The GEC ESTRO handbook of brachytherapy. Brussels: European Society of Therapeutic Radiology and Oncology; 2002. p. 153–215.

    Google Scholar 

  3. Pötter R, Gerbaulet A, Haie-Meder C. Endometrial cancer. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E, editors. The GEC ESTRO handbook of brachytherapy. Brussels: European Society of Therapeutic Radiology and Oncology; 2002. p. 365–401.

    Google Scholar 

  4. Mock U, Knocke TH, Fellner C, et al. Comparison of different application systems and CT-assisted treatment planning procedures in the treatment of primary endometrium carcinoma: Is it technically possible to include the whole uterus volume in the volume treated by brachytherapy? Strahlenther Onkol. 1998;174:320–8.

    Article  PubMed  CAS  Google Scholar 

  5. Kim RY, Pareek P. Radiography-based treatment planning compared with computed tomography (CT)-based treatment planning for intracavitary brachytherapy in cancer of the cervix: analysis of dose-volume histograms. Brachytherapy. 2003;2:200–6.

    Article  PubMed  Google Scholar 

  6. Datta NR, Srivastava A, Maria Das KJ, et al. Comparative assessment of doses to tumor, rectum, and bladder as evaluated by orthogonal radiographs vs. computer enhanced computed tomography-based intracavitary brachytherapy in cervical cancer. Brachytherapy. 2006;5:223–9.

    Article  PubMed  Google Scholar 

  7. De Brabandere M, Mousa AG, Nulens A, et al. Potential of dose optimisation in MRI-based PDR brachytherapy of cervix carcinoma. Radiother Oncol. 2008;88(2):217–26.

    Article  PubMed  Google Scholar 

  8. Hudej R, Petric P, Burger J. Standard versus 3D optimized MRI-based planning for uterine cervix cancer brachyradiotherapy-the Ljubljana experience. Zbornik predavanj, konferenca MEDICON, Ljubljana; 2007.

    Google Scholar 

  9. Lindegaard JC, Tanderup K, Nielsen SK, et al. MRI-guided 3D optimization significantly improves DVH parameters of pulsed-dose-rate brachytherapy in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 2008;71(3):756–64.

    Article  PubMed  Google Scholar 

  10. Petric P, Hudej R, Rogelj P, et al. Frequency-distribution mapping of HR CTV in locally advanced cervix cancer: a new tool for development of novel brachytherapy techniques. Radiother Oncol. 2009;91 Suppl 1:18–9.

    Google Scholar 

  11. Fletcher GH, Hamburger AD. Female pelvis. Squamous cell carcinoma of the uterine cervix. In: Fletcher GH, editor. Textbook of radiotherapy. 3rd ed. Philadelphia: Lea & Febiger; 1980. p. 720–89.

    Google Scholar 

  12. Gerbaulet A, Pötter R, Haie-Meder C. Cervix cancer. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E, editors. The GEC ESTRO handbook of brachytherapy. Brussels: European Society of Therapeutic Radiology and Oncology; 2002. p. 301–63.

    Google Scholar 

  13. Horiot JC, Pigneux J, Pourquier H. Radiotherapy alone in carcinoma of intact uterine cervix according to Fletcher guidelines: A French cooperative study of 1383 cases. Int J Radiat Oncol Biol Phys. 1988;14(4):605–11.

    Article  PubMed  CAS  Google Scholar 

  14. Ito H, Kutuki S, Nishiguchi I, et al. Radiotherapy for cervical cancer with high dose rate brachytherapy-correlation between tumour size, dose and failure. Radiother Oncol. 1994;31:240–7.

    Article  PubMed  CAS  Google Scholar 

  15. Perez CA, Breaux S, Bedwinek JM, et al. Effect of tumor size on the prognosis of carcinoma of the uterine cervix treated with irradiation alone. Cancer. 1992;69:2796–806.

    Article  PubMed  CAS  Google Scholar 

  16. Pernot M, Hoffstetter S, Peiffert D, et al. Statistical study of a series of 672 cases of carcinoma of the uterine cervix. Results and complications according to age and modalities of treatment. Bull Cancer. 1995;82(7):568–81.

    PubMed  CAS  Google Scholar 

  17. Petereit DG, Pearcey R. Literature analysis of high dose rate brachytherapy fractionation schedules in the treatment of cervical cancer: Is there an optimal fractionation schedule? Int J Radiat Oncol Biol Phys. 1999;43:359–66.

    Article  PubMed  CAS  Google Scholar 

  18. Pötter R, Knocke TH, Fellner C, et al. Definitive radiotherapy based on HDR brachytherapy with Iridium – 192 in cervix cancer – report on the recent Vienna university hospital experience (1993–1997) compared to the preceding period, referring to ICRU 38 recommendations. Bull Cancer Radiother. 2000;4:159–72.

    Article  Google Scholar 

  19. Visser AG, Symonds RP. Dose and volume specification for reporting gynaecological brachytherapy: time for a change. Radiother Oncol. 2001;58:1–4.

    Article  PubMed  CAS  Google Scholar 

  20. Barillot I, Horiot JC, Maingon P, et al. Maximum and mean bladder dose defined from ultrasonography. Comparison with the ICRU reference in gynaecological brachytherapy. Radiother Oncol. 1994;30(3):231–8.

    Article  PubMed  CAS  Google Scholar 

  21. Ling CC, Schell MC, Working KR, et al. CT-assisted assessment of bladder and rectum dose in gynecological implants. Int J Radiat Oncol Biol Phys. 1987;13(10):1577–82.

    Article  PubMed  CAS  Google Scholar 

  22. LaVigne SSL, ML MMK, et al. Three-dimensional treatment planning of intracavitary gynaecologic implants: analysis of ten cases and implications for dose specification. Int J Radiat Oncol Biol Phys. 1994;28(1):277–83.

    Article  PubMed  Google Scholar 

  23. Barillot I, Horiot JC, Maingon P, et al. Impact on treatment outcome and late effects of customized treatment planning in cervix carcinomas: baseline results to compare new strategies. Int J Radiat Oncol Biol Phys. 2000;48(1):189–200.

    Article  PubMed  CAS  Google Scholar 

  24. Chen SW, Liang JA, Yeh LS, et al. Comparative study of reference points by dosimetric analyses for late complications after uniform external radiotherapy and high-dose-rate brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2004;60(2):663–71.

    PubMed  Google Scholar 

  25. Ferrigno R, dos Santos Novaes PE, Pelizzon AC, et al. High-dose-rate brachytherapy in the treatment of uterine cervix cancer. Analysis of dose effectiveness and late complications. Int J Radiat Oncol Biol Phys. 2001;50(5):1123–35.

    Article  PubMed  CAS  Google Scholar 

  26. Kim HJ, Kim S, Ha SW, et al. Are doses to ICRU reference points valuable for predicting late rectal and bladder morbidity after definitive radiotherapy in uterine cervix cancer? Tumori. 2008;94(3):327–32.

    PubMed  Google Scholar 

  27. Ogino I, Kitamura T, Okamoto N, et al. Late rectal complication following high dose rate intracavitary brachytherapy in cancer of the cervix. Int J Radiat Oncol Biol Phys. 1995;31(4):725–34.

    Article  PubMed  CAS  Google Scholar 

  28. Perez CA, Grigsby PW, Lockett MA, et al. Radiation therapy morbidity in carcinoma of the uterine cervix: dosimetric and clinical correlation. Int J Radiat Oncol Biol Phys. 1999;44(4):855–66.

    Article  PubMed  CAS  Google Scholar 

  29. Roeske JC, Mundt AJ, Halpern H, et al. Late rectal sequelae following definitive radiation therapy for carcinoma of the uterine cervix: a dosimteric analysis. Int J Radiat Oncol Biol Phys. 1997;37(2):351–8.

    Article  PubMed  CAS  Google Scholar 

  30. Boss EA, Barentsz JO, Massuger LFAG, et al. The role of MR imaging in invasive cervical carcinoma (review). Eur Radiol. 2000; 10:256–70; Subak LL, Hricak H, Powell CB, et al. Cervical carcinoma: computed tomography and magnetic resonance imaging for preoperative staging. Obstet Gynecol 1995; 86:43–50.

    Google Scholar 

  31. Haie-Meder C, Pötter R, Van Limbergen E, et al. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol. 2005;74:235–45.

    Article  PubMed  Google Scholar 

  32. Pötter R, Haie-Mader C, Van Limbergen E, et al. Recommendations from gynaecological (GYN) GEC-ESTRO Working Group: (II): concepts and terms of 3D imaging, radiation physics, radiobiology, and 3D dose volume parameters. Radiother Oncol. 2006;78:67–77.

    Article  PubMed  Google Scholar 

  33. Dimopoulos JCA, Schard G, Berger D, et al. Systematic evaluation of MRI findings in different stages of treatment of cervical cancer: potential of MRI on delineation of target, patho-anatomical structures and organs at risk. Int J Radiat Oncol Biol Phys. 2006;64:1380–8.

    Article  PubMed  Google Scholar 

  34. Dimopoulos JCA, Schirl G, Baldinger A, et al. MRI assessment of cervical cancer for adaptive radiotherapy. Strahlentherapie und Onkologie. 2009;185(5):282–7.

    Article  PubMed  Google Scholar 

  35. Kerkhof EM, Raaymakers BW, van der Heide UA, van de Bunt L, Jürgenliemk-Schulz IM, Lagendijk JJ. Online MRI guidance for healthy tissue sparing in patients with cervical cancer: an IMRT planning study. Radiother Oncol. 2008;88(2):241–9.

    Article  PubMed  Google Scholar 

  36. Mitchell DG, Snyder B, Coakley F, et al. Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol. 2006;24(36):5687–94.

    Article  PubMed  Google Scholar 

  37. Oszarlak O, Tjalma W, Scheppens E, et al. The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur Radiol. 2003;13(10):2338–45.

    Article  Google Scholar 

  38. van de Bunt L, Jurgenliemk-Schulz IM, de Kort GA, Roesink JM, Tersteeg RJ, van der Heide UA. Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need? Radiother Oncol. 2008;88:233–40.

    Article  PubMed  Google Scholar 

  39. van de Bunt L, van der Heide UA, Ketelaars M, de Kort GA, Jurgenliemk-Schulz IM. Conventional, conformal, and intensity-modulated radiation therapy treatment planning of external beam radiotherapy for cervical cancer: The impact of tumor regression. Int J Radiat Oncol Biol Phys. 2006;64:189–96.

    Article  PubMed  Google Scholar 

  40. Haie-Meder C et al. MRI-based brachytherapy (BT) in the treatment of cervical cancer: experience of the Institut Gustave-Roussy. Radiother Oncol. 2007;83 Suppl 1:S11–2.

    Google Scholar 

  41. Kirisits C, Pötter R, Lang S, et al. Dose and volume parameters for MRI based treatment planning in intracavitary brachytherapy of cervix cancer. Int J Radiation Oncology Biol Phys. 2005;62(3):901–11.

    Article  Google Scholar 

  42. Pötter R, Dimopoulos J, Georg P, et al. Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol. 2007;83:148–55.

    Article  PubMed  Google Scholar 

  43. Viswanathan AN, Cormack R, Holloway CL, et al. Magnetic resonance-guided interstitial therapy for vaginal recurrence of endometrial cancer. Int J Radiat Oncol Biol Phys. 2006;66(1):91–9.

    Article  PubMed  Google Scholar 

  44. Wachter-Gerstner N, Wachter S, Reinstadler E, et al. The impact of sectional imaging on dose escalation in endocavitary HDR-brachytherapy of cervical cancer: results of a prospective comparative trial. Radiother Oncol. 2003;68(1):51–9.

    Article  PubMed  Google Scholar 

  45. Weitmann HD, Pötter R, Waldhäusl C, et al. Pilot study in the treatment of endometrial carcinoma with 3D image-based high-dose-rate brachytherapy using modified Heyman Packing: clinical experience and dose-volume histogram analysis. Int J Radiat Oncol Biol Phys. 2005;62(2):468–78.

    Article  PubMed  Google Scholar 

  46. Bernaschek G, Deutinger J, Kratochwill A. Endosonographic diagnosis of carcinoma. In: Endosonography in obstetrics and gynecology. Berlin, Heidelberg: Springer; 1990. p. 97–121.

    Chapter  Google Scholar 

  47. Davidson MT, Yuen J, D’Souza D, et al. Optimization of high-dose-rate cervix brachytherapy applicator placement: the benefits of intraoperative ultrasound guidance. Brachytherapy. 2008;7:248–53.

    Article  PubMed  Google Scholar 

  48. Granai CO, Allee P, Doherty F, et al. Ultrasound used for assessing the in situ position of intrauterine tandems. Gynecol Oncol. 1984;18(3):334–8.

    Article  PubMed  CAS  Google Scholar 

  49. Mayr NA, Montebello JF, Sorosky JI, et al. Brachytherapy management of the retroverted uterus using ultrasound-guided implant applicator placement. Brachytherapy. 2005;4:24–9.

    Article  PubMed  Google Scholar 

  50. Sahinler I, Cepni I, Colpan D, et al. Tandem application with transvaginal ultrasound guidance. Int J Radiat Oncol Biol Phys. 2004;59(1):190–6.

    Article  PubMed  Google Scholar 

  51. Stock RG, Chan K, Terk M, et al. A new technique for performing Syed–Neblett template interstitial implants for gynecologic malignancies using transrectal-ultrasound guidance. Int J Radiat Oncol Biol Phys. 1997;37:819–25.

    Article  PubMed  CAS  Google Scholar 

  52. Weitmann HD, Knocke TH, Waldhäusl C, et al. Ultrasound-guided interstitial Brachytherapy in the treatment of advanced vaginal recurrences from cervical and endometrial carcinoma. Strahlentherapie und Onkologie. 2006;182:86–95.

    Article  PubMed  Google Scholar 

  53. Gerbaulet A, Pötter R, Haie-Meder C. Primary vaginal cancer. In: Gerbaulet A, Pötter R, Mazeron JJ, Meertens H, Van Limbergen E, editors. The GEC ESTRO handbook of brachytherapy. Brussels: European Society of Therapeutic Radiology and Oncology; 2002. p. 153–215.

    Google Scholar 

  54. Van Dyk S, Narayan K, Fisher R, Bernshaw D. Conformal brachytherapy planning for cervical cancer using transabdominal ultrasound. Int J Radiat Oncol Biol Phys. 2009;75(1):64–70.

    Article  PubMed  Google Scholar 

  55. Kapp KS, Stuecklschweiger GF, Kapp DS, et al. Dosimetry of intracavitary placements for uterine and cervical carcinoma: results of orthogonal film, TLD, and CT-assisted techniques. Radiother Oncol. 1992;24(3):137–46.

    Article  PubMed  CAS  Google Scholar 

  56. Kim RY, Shen S, Duan J. Image-based three-dimensional treatment planning of intracavitary brachytherapy for cancer of the cervix: dose-volume histograms of the bladder, rectum, sigmoid colon, and small bowel. Brachytherapy. 2007;6(3):187–94.

    Article  PubMed  Google Scholar 

  57. Pelloski CE, Palmer M, Chronowski GM, et al. Comparison between CT-based volumetric calculations and ICRU reference-point estimates of radiation doses delivered to bladder and rectum during intracavitary radiotherapy for cervical cancer. Int J Radiat Oncol Biol Phys. 2005;62(1):131–7.

    Article  PubMed  Google Scholar 

  58. Sun LM, Huang EY, Ko SF, et al. Computer-tomography-assisted three-dimensional technique to assess rectal and bladder wall dose in intracavitary brachytherapy for uterine cervical cancer. Radiother Oncol. 2004;71(3):333–7.

    Article  PubMed  Google Scholar 

  59. van den Bergh F, Mertens H, Moonen LMF, et al. The use of a transverse CT image for the estimation of the dose given to the rectum in intracavitary brachytherapy for carcinoma of the cervix. Radiother Oncol. 1998;47:85–90.

    Article  PubMed  Google Scholar 

  60. Eisbruch A, Johnston CM, Martel MK, et al. Customized gynecologic interstitial implants: CT-based planning, dose evaluation and optimization aided by laparotomy. Int J Radiat Oncol Biol Phys. 1998;40(5):1087–93.

    Article  PubMed  CAS  Google Scholar 

  61. Fellner C, Pötter R, Knocke T, et al. A comparison of radiography and computed-tomography-based treatment planning in cervix cancer brachytherapy with specific attention to some quality assurance aspects. Radiother Oncol. 2001;58:53–62.

    Article  PubMed  CAS  Google Scholar 

  62. Mai J, Rownd J, Erickson B. CT-guided high-dose-rate dose prescription for cervical carcinoma: the importance of uterine wall thickness. Brachytherapy. 2002;1(1):27–35.

    Article  PubMed  Google Scholar 

  63. Shin KH, Kim TH, Cho JK, et al. CT-guided intracavitary radiotherapy for cervical cancer: comparison of conventional point A plan with clinical target volume-based three-dimensional plan using dose volume parameters. Int J Radiat Oncol Biol Phys. 2006;64(1):197–204.

    Article  PubMed  Google Scholar 

  64. Bond MG, Workman G, Martland J, et al. Dosimetric considerations in the treatment of inoperable endometrial carcinoma by a high dose rate afterloading packing technique. Clin Oncol. 1997;9(1):41–7.

    Article  CAS  Google Scholar 

  65. Bipat S, Glas AS, van der Velden J, et al. Computed tomography and magnetic resonance imaging in staging of uterine cervical carcinoma: a systematic review. Gynecol Oncol. 2003;91(1):59–66.

    Article  PubMed  Google Scholar 

  66. Hricak H, Gatsonis C, Coakley FV, et al. Early invasive cervical cancer: CT and MR imaging in preoperative evaluation – ACRIN/GOG comparative study of diagnostic performance and interobserver variability. Radiology. 2007;245(2):491–8.

    Article  PubMed  Google Scholar 

  67. Jung DC, Ju W, Choi HJ, et al. The validity of tumour diameter assessed by magnetic resonance imaging and gross specimen with regard to tumour volume in cervical cancer patients. Eur J Cancer. 2008;44(11):1524–8.

    Article  PubMed  Google Scholar 

  68. Lukas P, Heuck A. The use of magnetic resonance tomography in cancer of the cervix and uterus. Rontgenpraxis. 1990;43(12):439–44.

    PubMed  CAS  Google Scholar 

  69. Pötter R, Kovacs G, Haverkamp U. 3D Conformal Therapy in Brachytherapy. 8th International Brachytherapy Conference, Nice 1995. Nucletron-Oldelft, Veenendaal. p. 34–39.

    Google Scholar 

  70. Pötter R, Kovacs G, Lenzen B, et al. Technique of MRI assisted brachytherapy treatment planning. Activity. Selectr Brachyther J. 1991;5(3):145–8.

    Google Scholar 

  71. Pötter R. Modern imaging methods used for treatment planning and quality assurance for combined irradiation of cervix cancer, Workshop Integration of external beam therapy and brachytherapy in the treatment of cervix cancer: clinical, physical and biological aspects. Annual Brachytherapy Meeting GEC-ESTRO Stockholm, 5–7 May 1997; European Society for Therapeutic Radiology and Oncology, Groupe Européen de Curiethérapie 1997; p. 27–39.

    Google Scholar 

  72. Schmidt BF, Hirnle P, Kaulich TW, et al. The value of NMR tomography in the planning of HDR-afterloading brachytherapy in cervical carcinomas: The experience with 41 patients. Rofo. 1991;155(2):109–16.

    Article  PubMed  CAS  Google Scholar 

  73. Schoeppel SL, Ellis JH, LaVigne ML, et al. Magnetic resonance imaging during intracavitary gynecologic brachytherapy. Int J Radiat Oncol Biol Phys. 1992;23(1):169–74.

    Article  PubMed  CAS  Google Scholar 

  74. Tardivon AA, Kinkel K, Lartigau E, et al. MR imaging during intracavitary brachytherapy of vaginal and cervical cancer: preliminary results. Radiographics. 1996;16(6):1363–70.

    PubMed  CAS  Google Scholar 

  75. Dimopoulos J, Fidarova E, Pötter R. Definitive radiotherapie und radiochemotherapie der vulva und vagina. Onkologe. 2009;15:54–63.

    Article  Google Scholar 

  76. Dimopoulos J, Schmid M, Berger D et al. MRI-guided BT with EBRT plus chemotherapy for the treatment of locally advanced vaginal cancer. Radiother Oncol. 2009;91 (Suppl.1):S18–19.

    Google Scholar 

  77. Pötter R. Vaginalkarzinom. In: Strnad V, Pötter R, Kovacs G, editors. Stand und Perspektiven der klinischen Brachytherapie. Bremen: UNI-MED; 2004. p. 114–21.

    Google Scholar 

  78. Nag S, Cardenes H, Chang S, et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: report from image-guided brachytherapy working group. Int J radiat Oncol Biol Phys. 2004;60(4):1160–72.

    Article  PubMed  Google Scholar 

  79. Grigsby PW, Siegel BA, Dehdashti F, et al. Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome. J Clin Oncol. 2004;22:2167–71.

    Article  PubMed  Google Scholar 

  80. Xue F, Lin LL, Dehdashti F, et al. F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy. Gynecol Oncol. 2006;101:147–51.

    Article  PubMed  CAS  Google Scholar 

  81. Malyapa RS, Mutic S, Low DA, et al. Physiologic FDG-PET three dimensional brachytherapy treatment planning for cervical cancer. Int J Radiat Oncol Biol Phys. 2002;54(4):1140–6.

    Article  PubMed  Google Scholar 

  82. Mutic S, Grigsby PW, Low DA, et al. PET-guided three-dimensional treatment planning of intracavitary gynecologic implants. Int J Radiat Oncol Biol Phys. 2002;52(4):1104–10.

    Article  PubMed  Google Scholar 

  83. Nag S. Controversies and new developments in gynecologic brachytherapy: image-based intracavitary brachytherapy for cervical carcinoma. Semin Radiat Oncol. 2006;16(3):164–7.

    Article  PubMed  Google Scholar 

  84. Dimopoulos JC, De Vos V, Berger D, et al. Inter-observer comparison of target delineation for MRI-assisted cervical cancer brachytherapy: application of the GYN GEC-ESTRO recommendations. Radiother Oncol. 2009;91(2):166–72.

    Article  PubMed  Google Scholar 

  85. Petric P, Hudej R, Rogelj P, et al. 3D T2-weighted fast recovery fast spin echo sequence MRI for target contouring in cervix cancer brachytherapy. Brachytherapy. 2008;7(2):109.

    Article  Google Scholar 

  86. Berger D, Dimopoulos J, Georg P, et al. Uncertainties in assessment of the vaginal dose for intracavitary brachytherapy of cervical cancer using a tandem-ring applicator. Int J Radiat Oncol Biol Phys. 2007;67(5):1451–9.

    Article  PubMed  Google Scholar 

  87. Viswanathan AN, Dimopoulos JCA, Kirisits C, et al. CT versus MRI-based contouring in cervical cancer brachytherapy: results of a prospective trial and preliminary guidelines for standardized Contours. Int J Radiat Oncol Biol Phys. 2007;68:491–8.

    Article  PubMed  Google Scholar 

  88. Shenfield CB, Berger D, Dimopoulos JCA, et al. Systematic comparison of two methods of bladder contouring in cervix cancer brachytherapy: ‘Direct’ vs. ‘indirect’. Brachytherapy. 2009;8(2):141–2.

    Article  Google Scholar 

  89. Wachter-Gerstner N, Wachter S, Reinstadler E, et al. Bladder and rectum dose defined from MRI based treatment planning for cervix cancer brachytherapy: comparison of dose-volume histograms for organ contours and organ wall, comparison with ICRU rectum and bladder reference point. Radiother Oncol. 2003;68(3):269–76.

    Article  PubMed  Google Scholar 

  90. Olszewska AM, Saarnak AE, De Boer RW, et al. Comparison of dose-volume histograms and dose-wall histograms of the rectum of patients treated with intracavitary brachytherapy. Radiother Oncol. 2001;61(1):83–5.

    Article  PubMed  CAS  Google Scholar 

  91. Georg D, Kirisits C, Hillbrand M, et al. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy versus high-tech brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(4):1272–8.

    Article  PubMed  Google Scholar 

  92. Lang S, Nulens A, Briot E, et al. Intercomparison of treatment concepts for MR image assisted brachytherapy of cervical carcinoma based on GYN GEC-ESTRO recommendations. Radiother Oncol. 2006;78:185–93.

    Article  PubMed  Google Scholar 

  93. Nulens A, Lang S, Briot E, et al. Evaluation of contouring concepts and dose volume parameters of MR based brachytherapy treatment plans for cervix cancer: results and conclusions of the GEC-ESTRO, GYN working group delineation workshops GEC-ESTRO Meeting, Budapest 2005. Radiother Oncol. 2005;75(1):S9.

    Article  Google Scholar 

  94. Petric P, Dimopoulos J, Kirisits C, et al. Inter- and intraobserver variation in HR CTV contouring: Intercomparison of transverse and paratransverse image orientation in 3D-MRI assisted cervix cancer brachytherapy. Radiother Oncol. 2008;89(2):164–71.

    Article  PubMed  Google Scholar 

  95. Kelly C, Thirion P, Grimley J, et al. Quantification of interobserver variation in delineation of target volumes using the GEC-ESTRO recommendations for MRI based brachytherapy of the cervix. Radiother Oncol. 2006;81 suppl 1:663.

    Google Scholar 

  96. Saarnak AE, Boersma M, van Bunningen BN, et al. Inter-observer variation in delineation of bladder and rectum contours for brachytherapy of cervical cancer. Radiother Oncol. 2000;56(1):37–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Primož Petrič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Petrič, P., Pötter, R., Van Limbergen, E., Haie-Meder, C. (2011). Adaptive Contouring of the Target Volume and Organs at Risk. In: Viswanathan, A., Kirisits, C., Erickson, B., Pötter, R. (eds) Gynecologic Radiation Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68958-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68958-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68954-6

  • Online ISBN: 978-3-540-68958-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics